MA580/CSC580 Review II

- 1. Homework problems; problems from class; class notes etc.
- 2. Perform Gauss elimination with partial column pivoting on the matrix:

$$A = \left[\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 3 & -3 \\ 2 & 4 & 2 \end{array} \right].$$

- (a) What is the LU factorization of PA (where PA = LU)?
- (b) Compute the direct factorization A = LU.
- (c) Approximately how many operations are required in (a) and (b).
- (d) Compute the determinant of A from (a) and (b).
- (e) Use your factorization results from (a) and (b) to solve Ax = b, where $b^T = \begin{bmatrix} 2 & -4 & 6 \end{bmatrix}$.
- (f) Find $||A||_p$, $cond_p(A)$ for $p = 1, 2, \infty$.
- 3. When we solve a linear system of Ax = b $(det(A) \neq 0)$ on a computer with machine epsilon ϵ using the Gaussian elimination with partial column pivoting (GEPP), the final computed solution, say x_c will be different from the true solution $x_e = A^{-1}b$. (a): Give an error estimate of the relative error. (b): Give an upper bound of the growth factor g(n). (c): Let the residual of x_c be $r(x_c) = \|b Ax_c\|$, show that $\frac{\|\mathbf{x}_e \mathbf{x}_a\|}{\|\mathbf{x}_c\|} \leq \|A^{-1}\| \frac{\|r(\mathbf{x}_c)\|}{\|\mathbf{x}_c\|}$.
- 4. List at least three kinds of matrices for which pivoting strategies may not be necessary and explain why.
- 5. Suppose

	[1	0	0	0	0	0]	[1	0	0	0	0	0]	[1]	0	0	0	0	0				
$L_1 =$	-4	1	0	0	0	0	$, L_3 =$				0	1	0	0	0	0		0	1	0	0	0	0	
	3	0	1	0	0	0		0	0	1	0	0	0	, P =	0	0	0	0	1	0				
	6	0	0	1	0	0		0	0) 1/2	1	0	0		0	0	0 0	1	0	0 .	•			
	-2	0	0	0	1	0		0	0	-1	0	1	0		0	0	1	0	0	0				
	1	0	0	0	0	1		0	0	1/5	0	0	1]	0	0	0	0	0	1				

- (a) Can L_1 or L_3 be a Gauss transformation matrix with partial pivoting? Why?
- (b) Compute L_1^{-1} , L_3^{-1} , $L_1 L_3$, and $L_1^{-1} L_3^{-1}$.
- (c) Compute P^{-1} , P^T , P^2 , PL_3 , and PL_3P .
- (d) Find the condition number of each matrix.

6. For the following matrices

$$A = \begin{bmatrix} 3 & -1 & \alpha \\ -1 & \beta & 1/2 \\ 1 & 1/2 & \gamma \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 1 & 0 & 1 \\ 1 & \alpha & -1 & 1 \\ 0 & -1 & \beta & \gamma \\ 1 & 1 & 0 & -2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & \gamma & -2 \\ \beta & 2 & \gamma \\ -2 & 5 & 4 \end{bmatrix},$$

can you choose the parameters so that the matrix is

- (a) symmetric;
- (b) strictly row diagonally dominant;
- (c) symmetric positive definite?
- 7. Suppose $A = LDL^T$, where L is a unit lower triangular matrix.
 - (a) Is A symmetric?
 - (b) When is A a symmetric positive definite matrix?
 - (c) Show that such a decomposition is possible if and only if the determinants of the principal leading sub-matrices A_k of A are all non-zero for $k = 1, 2, \dots n 1$.
 - (d) What are the orders of operations (multiplication/division, addition/subtraction) needed for such decomposition?
 - (e) Can you get $A = LL^T$ factorization from $A = LDL^T$ if A is a S.P.D? How?
- 8. Derive A = LU decomposition, where U is a unit upper triangular matrix. That is to derive the recursive relation for

$$l_{ij}, i = j, j + 1, \dots, n,$$

 $u_{ij}, j = i + 1, \dots, n,$

- (a) Write a pseudo code for your algorithm.
- (b) How many operations (multiplications/divisions and addition/subtractions) are required in your algorithm.
- (c) Outline how to use such a decomposition to solve Ax = b and compute the determinant of A.
- 9. Give a vector of \bar{x} , and Ax = b. Derive the relation between the residual $||b A\bar{x}||$ and the error $||\bar{x} A^{-1}b||$.
- 10. For the following model matrices, what kind of matrix-factorization would you like to use for solving the linear system of equations? Analyze your choices (operation count, storage, pivoting etc).

$$\begin{bmatrix} 3 & -1 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 \\ 0 & -1 & 3 & -1 & 0 \\ 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 3 \end{bmatrix}, \begin{bmatrix} 0.01 & 3 & 0 & -4 \\ 1 & 2 & 1 & 2 \\ -1 & 0 & 3 & -2 \\ 5 & -2 & 3 & 6 \end{bmatrix}.$$

11. Let $A^{(2)}$ is the matrix obtained after one step Gauss elimination applied to a matrix A, that is

$$a_{ij}^{(2)} = a_{ij} - \frac{a_{i1}}{a_{11}} a_{1j}$$

(a) Show that

$$\max_{ij} |a_{ij}^{(2)}| \le 2 \max_{ij} |a_{ij}| \tag{1}$$

if partial pivoting is used.

- (b) Show that without pivoting, (1) is still true if A is column diagonally dominant.
- 12. If we use Gauss-Seidel iteration backwards, that is, from $x_n, x_n 1, \dots x_1$, we get another Gaus-Seidel iterative method. Derive the matrix and vector form of such an iterative method. If we apply this iterative method and the Gauss-Seidel method alternatively, then the combined method is called symmetric Gauss-Seidel method. The related $SOR(\omega)$ is called symmetric $SOR(\omega)$ or $SSOR(\omega)$. Write a pseudo-code.
- 13. (a): Show that if λ_i is an eigenvalue of A, then λ^k is an eigenvalue of A^k for any integers k assuming that if k < 0 A^{-1} exists. (b): Show that if $A = A^T$, then $cond_2(A) = \frac{\max |\lambda_i(A)|}{\min |\lambda_i(A)|}$.
- 14. If λ is an eigenvalue of a matrix A,
 - (a) show that $|\lambda| \leq ||A||$ and so $\rho(A) \leq ||A||$;
 - (b) Show that if there is one matrix norms such that ||R|| < 1, then the stationary iterative method converges.
 - (c) In the SOR(ω) method, can we take $\omega = -0.5, 1.8, 3.4$?
- 15. Given a stationary iterative method $x^{k+1} = Rx^k + c$, show that (a): if there is one matrix norm such that ||R|| < 1, then the iterative method converges. (b): If the spectral radius $\rho(R) > 1$, then the iterative method diverges.
- 16. Check the convergence of Jacobi, Gauss-Seidel, and $SOR(\omega)$ if (a): A is a column dominant matrix (strictly, weakly); (b): A is a symmetric positive (or negative) matrix.
- 17. Consider the linear system of equations

$$\frac{U_{i-1,j} + U_{i+1,j} + U_{i,j-1} + U_{i,j+1} - 4U_{i,j}}{h^2} = f_{ij}, \quad 0 < i, j < n-1,$$

with zero boundary condition (i = 0, or j = 0, or i = m, or j = n. (a): What is the size of the linear system of equations if it is written as AU = F? (b): What are the order of $||A||_p$, $cond_2(A)$ in terms of n? (c): Show that $\rho(R_J) = \max_{1 \le k \le n} \left| 1 + \frac{\lambda_k(A)}{4} \right|$. (d): * Show that the eigenvalues of A are

$$\lambda_{i,j} = -\left(4 - 2\left(\cos\frac{i\pi}{n} + \cos\frac{j\pi}{n}\right)\right), \quad i, j = 1, 2, \dots n - 1.$$

(d): How many iterations do we need in general if we use Jacobi, Gauss-Seidel, and SOR(ω) in terms of n?

18. Consider the linear system of equations (also consider one, three dimensions)

$$U_{i-1,j} + U_{i+1,j} + U_{i,j-1} + U_{i,j+1} - 4U_{ij} + \alpha U_{ij} = f_{ij}, \quad 0 < i, j < n-1.$$
⁽²⁾

- (a) Write down the Jacobi, $SOR(\omega)$ methods.
- (b) What is the order of the number of iterations for the convergence when $\omega = 1$, and the optimal ω in terms of n when $\alpha = 0$?
- (c) When $\alpha = 0$ write down the matrix vector form of the linear system of equations using the natural ordering, how about black/red ordering. What is relation between the two coefficient matrices. Does SOR(ω) converge? For which ω , why?
- 19. Given the following linear system of equations:

$$3x_1 - x_2 + x_3 = 3$$

$$2x_2 + x_3 = 2$$

$$-x_2 + 2x_3 = 2$$

- (a) With $x^{(0)} = [1, -1, 1]^T$, find the *first* and *second* iteration of the Jacobi, Gauss-Seidel, and SOR ($\omega = 1.5$) methods.
- (b) Write down the Jacobi and Gauss-Seidel iteration matrices R_J and R_{GS} .
- (c) Do the Jacobi and Gauss-Seidel iterative methods converge?