MA580/CSC580 Review II

1. Homework problems; problems from class; class notes etc.
2. Perform Gauss elimination with partial column pivoting on the matrix:

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 3 & -3 \\
2 & 4 & 2
\end{array}\right]
$$

(a) What is the $L U$ factorization of $P A$ (where $P A=L U$)?
(b) Compute the direct factorization $A=L U$.
(c) Approximately how many operations are required in (a) and (b).
(d) Compute the determinant of A from (a) and (b).
(e) Use your factorization results from (a) and (b) to solve $A x=b$, where $b^{T}=\left[\begin{array}{ccc}2 & -4 & 6\end{array}\right]$.
(f) Find $\|A\|_{p}, \operatorname{cond}_{p}(A)$ for $p=1,2, \infty$.
3. When we solve a linear system of $A x=b(\operatorname{det}(A) \neq 0)$ on a computer with machine epsilon ϵ using the Gaussian elimination with partial column pivoting (GEPP), the final computed solution, say x_{c} will be different from the true solution $x_{e}=A^{-1} b$. (a): Give an error estimate of the relative error. (b): Give an upper bound of the growth factor $g(n)$. (c): Let the residual of x_{c} be $r\left(x_{c}\right)=\left\|b-A x_{c}\right\|$, show that $\frac{\left\|\mathbf{x}_{e}-\mathbf{x}_{a}\right\|}{\left\|\mathbf{x}_{c}\right\|} \leq\left\|A^{-1}\right\| \frac{\left\|r\left(\mathbf{x}_{c}\right)\right\|}{\left\|\mathbf{x}_{c}\right\|}$.
4. List at least three kinds of matrices for which pivoting strategies may not be necessary and explain why.
5. Suppose

$$
L_{1}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-4 & 1 & 0 & 0 & 0 & 0 \\
3 & 0 & 1 & 0 & 0 & 0 \\
6 & 0 & 0 & 1 & 0 & 0 \\
-2 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right], L_{3}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 / 5 & 0 & 0 & 1
\end{array}\right], P=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

(a) Can L_{1} or L_{3} be a Gauss transformation matrix with partial pivoting? Why?
(b) Compute $L_{1}^{-1}, L_{3}^{-1}, L_{1} L_{3}$, and $L_{1}^{-1} L_{3}^{-1}$.
(c) Compute $P^{-1}, P^{T}, P^{2}, P L_{3}$, and $P L_{3} P$.
(d) Find the condition number of each matrix.
6. For the following matrices

$$
A=\left[\begin{array}{ccc}
3 & -1 & \alpha \\
-1 & \beta & 1 / 2 \\
1 & 1 / 2 & \gamma
\end{array}\right], \quad B=\left[\begin{array}{cccc}
4 & 1 & 0 & 1 \\
1 & \alpha & -1 & 1 \\
0 & -1 & \beta & \gamma \\
1 & 1 & 0 & -2
\end{array}\right], \quad C=\left[\begin{array}{ccc}
1 & \gamma & -2 \\
\beta & 2 & \gamma \\
-2 & 5 & 4
\end{array}\right]
$$

can you choose the parameters so that the matrix is
(a) symmetric;
(b) strictly row diagonally dominant;
(c) symmetric positive definite?
7. Suppose $A=L D L^{T}$, where L is a unit lower triangular matrix.
(a) Is A symmetric?
(b) When is A a symmetric positive definite matrix?
(c) Show that such a decomposition is possible if and only if the determinants of the principal leading sub-matrices A_{k} of A are all non-zero for $k=1,2, \cdots n-1$.
(d) What are the orders of operations (multiplication/division, addition/subtraction) needed for such decomposition?
(e) Can you get $A=L L^{T}$ factorization from $A=L D L^{T}$ if A is a S.P.D? How?
8. Derive $A=L U$ decomposition, where U is a unit upper triangular matrix. That is to derive the recursive relation for

$$
\begin{aligned}
l_{i j}, & i=j, j+1, \cdots, n, \\
u_{i j}, & j=i+1, \cdots, n,
\end{aligned}
$$

(a) Write a pseudo code for your algorithm.
(b) How many operations (multiplications/divisions and addition/subtractions) are required in your algorithm.
(c) Outline how to use such a decomposition to solve $A x=b$ and compute the determinant of A.
9. Give a vector of \bar{x}, and $A x=b$. Derive the relation between the residual $\|b-A \bar{x}\|$ and the error $\left\|\bar{x}-A^{-1} b\right\|$.
10. For the following model matrices, what kind of matrix-factorization would you like to use for solving the linear system of equations? Analyze your choices (operation count, storage, pivoting etc).

$$
\left[\begin{array}{ccccc}
3 & -1 & 0 & 0 & 0 \\
-1 & 3 & -1 & 0 & 0 \\
0 & -1 & 3 & -1 & 0 \\
0 & 0 & -1 & 3 & -1 \\
0 & 0 & 0 & -1 & 3
\end{array}\right], \quad\left[\begin{array}{cccc}
0.01 & 3 & 0 & -4 \\
1 & 2 & 1 & 2 \\
-1 & 0 & 3 & -2 \\
5 & -2 & 3 & 6
\end{array}\right]
$$

11. Let $A^{(2)}$ is the matrix obtained after one step Gauss elimination applied to a matrix A, that is

$$
a_{i j}^{(2)}=a_{i j}-\frac{a_{i 1}}{a_{11}} a_{1 j} .
$$

(a) Show that

$$
\begin{equation*}
\max _{i j}\left|a_{i j}^{(2)}\right| \leq 2 \max _{i j}\left|a_{i j}\right| \tag{1}
\end{equation*}
$$

if partial pivoting is used.
(b) Show that without pivoting, (1) is still true if A is column diagonally dominant.
12. If we use Gauss-Seidel iteration backwards, that is, from $x_{n}, x_{n}-1, \cdots x_{1}$, we get another GausSeidel iterative method. Derive the matrix and vector form of such an iterative method. If we apply this iterative method and the Gauss-Seidel method alternatively, then the combined method is called symmetric Gauss-Seidel method. The related $\operatorname{SOR}(\omega)$ is called symmetric $\operatorname{SOR}(\omega)$ or $\operatorname{SSOR}(\omega)$. Write a pseudo-code.
13. (a): Show that if λ_{i} is an eigenvalue of A, then λ^{k} is an eigenvalue of A^{k} for any integers k assuming that if $k<0 A^{-1}$ exists. (b): Show that if $A=A^{T}$, then $\operatorname{cond}_{2}(A)=\frac{\max \left|\lambda_{i}(A)\right|}{\min \left|\lambda_{i}(A)\right|}$.
14. If λ is an eigenvalue of a matrix A,
(a) show that $|\lambda| \leq\|A\|$ and so $\rho(A) \leq\|A\|$;
(b) Show that if there is one matrix norms such that $\|R\|<1$, then the stationary iterative method converges.
(c) In the $\operatorname{SOR}(\omega)$ method, can we take $\omega=-0.5,1.8,3.4$?
15. Given a stationary iterative method $x^{k+1}=R x^{k}+c$, show that (a): if there is one matrix norm such that $\|R\|<1$, then the iterative method converges. (b): If the spectral radius $\rho(R)>1$, then the iterative method diverges.
16. Check the convergence of Jacobi, Gauss-Seidel, and $\operatorname{SOR}(\omega)$ if (a): A is a column dominant matrix (stricly, weakly) ; (b): A is a symmetric positive (or negative) matrix.
17. Consider the linear system of equations

$$
\frac{U_{i-1, j}+U_{i+1, j}+U_{i, j-1}+U_{i, j+1}-4 U_{i j}}{h^{2}}=f_{i j}, \quad 0<i, j<n-1,
$$

with zero boundary condition $(i=0$, or $j=0$, or $i=m$, or $j=n$. (a): What is the size of the linear system of equations if it is written as $A U=F$? (b): What are the order of $\|A\|_{p}, \operatorname{cond}_{2}(A)$ in terms of n ? (c): Show that $\rho\left(R_{J}\right)=\max _{1 \leq k \leq n}\left|1+\frac{\lambda_{k}(A)}{4}\right|$. (d): * Show that the eigenvalues of A are

$$
\lambda_{i, j}=-\left(4-2\left(\cos \frac{i \pi}{n}+\cos \frac{j \pi}{n}\right)\right), \quad i, j=1,2, \cdots n-1 .
$$

(d): How many iterations do we need in general if we use Jacobi, Gauss-Seidel, and $\operatorname{SOR}(\omega)$ in terms of n ?
18. Consider the linear system of equations (also consider one, three dimensions)

$$
\begin{equation*}
U_{i-1, j}+U_{i+1, j}+U_{i, j-1}+U_{i, j+1}-4 U_{i j}+\alpha U_{i j}=f_{i j}, \quad 0<i, j<n-1 . \tag{2}
\end{equation*}
$$

(a) Write down the $\operatorname{Jacobi}, \operatorname{SOR}(\omega)$ methods.
(b) What is the order of the number of iterations for the convergence when $\omega=1$, and the optimal ω in terms of n when $\alpha=0$?
(c) When $\alpha=0$ write down the matrix vector form of the linear system of equations using the natural ordering, how about black/red ordering. What is relation between the two coefficient matrices. Does $\operatorname{SOR}(\omega)$ converge? For which ω, why?
19. Given the following linear system of equations:

$$
\begin{array}{r}
3 x_{1}-x_{2}+x_{3}=3 \\
2 x_{2}+x_{3}=2 \\
-x_{2}+2 x_{3}=2
\end{array}
$$

(a) With $x^{(0)}=[1,-1,1]^{T}$, find the first and second iteration of the Jacobi, Gauss-Seidel, and SOR ($\omega=1.5$) methods.
(b) Write down the Jacobi and Gauss-Seidel iteration matrices R_{J} and $R_{G S}$.
(c) Do the Jacobi and Gauss-Seidel iterative methods converge?

