MA/CSC 580 Review

1. Homework problems.
2. Questions and problems discussed in class.
3. Computer number systems and round-off error analysis, Wilkinson's backward error analysis. What is the machine precision?
Find error bounds of $f l(x), f l(x \circ y), \circ=+,-, \times, \div \sqrt{x}$, etc. How about $f l(x \circ y \circ z)$?
4. How to avoid round-off errors? $f(x+h)-f(x), 1-\cos x, b-\sqrt{b^{2}-\delta}, f(x) / x, \ldots$
5. Definition of vector and matrix norms. Associate matrix norms. Cauchy-Schwartz inequality. Frobineuous norm.

- Show that the $\|x\|_{p}$ norms are equivalent $(p=1,2, \infty)$.
- Show that the $\|A\|_{p}$ norms are equivalent $(p=1,2, \infty)$.
- Derive the expression for $\|A\|_{p}$ norms $(p=1,2, \infty)$.
- Show that $\|Q x\|_{2}=\|x\|_{2} ;\|Q A\|_{2}=\|A\|_{2} ;\|Q\|_{2}=1$, where Q is a unitary matrix.
- Show that $\|I\|=1 ;\|A x\| \leq\|A\|\|x\|,\|A B\| \leq\|A\|\|B\|$.

6. Given a matrix A. Find $A=L U$ or $P A=L U$, From $P A=L U$ factorization to solve $A x=b$:

- Compute $P b$,
- Forward substitution: $L y=P b$,
- Backward substitution: $U x=y$.

7. Suppose

$$
L_{1}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-4 & 1 & 0 & 0 & 0 & 0 \\
3 & 0 & 1 & 0 & 0 & 0 \\
6 & 0 & 0 & 1 & 0 & 0 \\
-2 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right], L_{3}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 / 5 & 0 & 0 & 1
\end{array}\right], P=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

(a) Can L_{1} or L_{3} be a Gauss transformation matrix with partial pivoting? Why?
(b) Compute $L_{1}^{-1}, L_{3}^{-1}, L_{1} L_{3}$, and $L_{1}^{-1} L_{3}^{-1}$.
(c) Compute $P^{-1}, P^{T}, P^{2}, P L_{3}$, and $P L_{3} P$.

