MA/CSC 580 Review

- 1. Homework problems.
- 2. Questions and problems discussed in class.
- 3. Computer number systems and round-off error analysis, Wilkinson's backward error analysis. What is the machine precision?

Find error bounds of fl(x), $fl(x \circ y)$, $\circ = +, -, \times, \div \sqrt{x}$, etc. How about $fl(x \circ y \circ z)$?

- 4. How to avoid round-off errors? $f(x+h) f(x), 1 \cos x, b \sqrt{b^2 \delta}, f(x)/x, \dots$
- 5. Definition of vector and matrix norms. Associate matrix norms. Cauchy-Schwartz inequality. Frobineuous norm.
 - Show that the $||x||_p$ norms are equivalent $(p = 1, 2, \infty)$.
 - Show that the $||A||_p$ norms are equivalent $(p = 1, 2, \infty)$.
 - Derive the expression for $||A||_p$ norms $(p = 1, 2, \infty)$.
 - Show that $||Qx||_2 = ||x||_2$; $||QA||_2 = ||A||_2$; $||Q||_2 = 1$, where Q is a unitary matrix.
 - Show that ||I|| = 1; $||Ax|| \le ||A|| ||x||$, $||AB|| \le ||A|| ||B||$.

6. Given a matrix A. Find A = LU or PA = LU, From PA = LU factorization to solve Ax = b:

- Compute *Pb*,
- Forward substitution: Ly = Pb,
- Backward substitution: Ux = y.
- 7. Suppose

	1	0	0	0	0	0]	[1	0	0	0	0	0		[1	0	0	0	0	0										
$L_1 =$	-4	1	0	0	0	0	, $L_3 =$										0	1	0	0	0	0		0	1	0	0	0	0	
	3				0	0		0	0	1	0	0	0	, P =	0	0	0	0	1	0	.									
	6	0	0	1	0	0		0	0	1/2	1	0	0		0	0	0	1	0	0										
	-2	0	0	0	1	0											0	0	-1	0 1 0		0	0	1	0	0	0			
	1	0	0	0	0	0		0	0	1/5	0	0	1		0	0	0	0	0	1 _										

- (a) Can L_1 or L_3 be a Gauss transformation matrix with partial pivoting? Why?
- (b) Compute L_1^{-1} , L_3^{-1} , $L_1 L_3$, and $L_1^{-1} L_3^{-1}$.
- (c) Compute P^{-1} , P^T , P^2 , PL_3 , and PL_3P .