MA/CSC 580, Homework #7 Suggested

- 1. Given a linear system of equations Ax = b, where A is an n by n symmetric positive definite matrix.
 - (a) Show that we can find a matrix B which is also an SPD matrix such that $B^2 = A$. Thus we can denote $B = A^{1/2}$.
 - (b) Show that x^* that minimizes $\phi x = \frac{1}{2}x^T A x b^T x$ is the solution $x^* = A^{-1}b$ and vice-versa.
 - (c) Show that $x^T A x$ is a vector norm, denoted as $||x||_{A^{1/2}}$.
 - (d) Show that $\sqrt{\lambda_{min}(A)} \|x\|_2 \le \|x\|_{A^{1/2}} \le \sqrt{\lambda_{max}(A)} \|x\|_2$.
 - (e) Given an initial guess x_0 and $r(x_0) \neq 0$. Let $p_0 = r_0$. Consider the conjugate method. For $k = 0, 1, \cdots$ until converge

$$\begin{aligned} x_{k+1} &= x_k + \alpha_k p_k, \quad \text{thus} \quad r_{k+1} = r_k - \alpha_k A p_k, \\ p_{k+1} &= r_{k+1} + \beta_{k+1} p_k \end{aligned}$$

Define $e_k = A^{-1}b - x_k$. Find α_k to minimize $\min_{\alpha_k} ||e_{k+1}||_{A^{1/2}}$.

- (f) Find β_{k+1} such that $p_{k+1}^T A p_k = 0$.
- (g) Show that $x_{k+1} x_0$, p_k , r_k , are all in the Krylov space $\mathcal{K}_k(r_0)$.
- (h) Show that $\{A^{1/2}p_j, j = 0, 1, \dots, k-1\|$ form an orthogonal basis in $\mathcal{K}_k(r_0)$ in 2-norm, i.e. regular Euclidian norm.
- (i) Show that $||e_k||_{A^{1/2}} \leq \min_{p \in P_k, p(0)=1} ||p(A)||_2 ||e_0||_{A^{1/2}}$. Where P_k is a set of all polynomials of with degree $\leq k$.
- (j) Show that the CG method convergences in at most $\min\{p_{min}(A), n\}$ steps, where $p_{min}(A)$ is the degree of the minimal of polynomial of A.
- (k) $r_k^T p_j = 0, j = 1, 2, \dots k 1.$