1. Given a linear system of equations $A x=b$, where A is an n by n symmetric positive definite matrix.
(a) Show that we can find a matrix B which is also an SPD matrix such that $B^{2}=A$. Thus we can denote $B=A^{1 / 2}$.
(b) Show that x^{*} that minimizes $\phi x=\frac{1}{2} x^{T} A x-b^{T} x$ is the solution $x^{*}=A^{-1} b$ and vice-versa.
(c) Show that $x^{T} A x$ is a vector norm, denoted as $\|x\|_{A^{1 / 2}}$.
(d) Show that $\sqrt{\lambda_{\min }(A)}\|x\|_{2} \leq\|x\|_{A^{1 / 2}} \leq \sqrt{\lambda_{\max }(A)}\|x\|_{2}$.
(e) Given an initial guess x_{0} and $r\left(x_{0}\right) \neq 0$. Let $p_{0}=r_{0}$. Consider the conjugate method. For $k=0,1, \cdots$ until converge

$$
\begin{aligned}
x_{k+1} & =x_{k}+\alpha_{k} p_{k}, \quad \text { thus } \quad r_{k+1}=r_{k}-\alpha_{k} A p_{k} \\
p_{k+1} & =r_{k+1}+\beta_{k+1} p_{k}
\end{aligned}
$$

Define $e_{k}=A^{-1} b-x_{k}$. Find α_{k} to minimize $\min _{\alpha_{k}}\left\|e_{k+1}\right\|_{A^{1 / 2}}$.
(f) Find β_{k+1} such that $p_{k+1}^{T} A p_{k}=0$.
(g) Show that $x_{k+1}-x_{0}, p_{k}, r_{k}$, are all in the Krylov space $\mathcal{K}_{k}\left(r_{0}\right)$.
(h) Show that $\left\{A^{1 / 2} p_{j}, j=0,1, \cdots, k-1 \|\right.$ form an orthogonal basis in $\mathcal{K}_{k}\left(r_{0}\right)$ in 2-norm, i.e. regular Euclidian norm.
(i) Show that $\left\|e_{k}\right\|_{A^{1 / 2}} \leq \min _{p \in P_{k}, p(0)=1}\|p(A)\|_{2}\left\|e_{0}\right\|_{A^{1 / 2}}$. Where P_{k} is a set of all polynomials of with degree $\leq k$.
(j) Show that the CG method convergences in at most $\min \left\{p_{\min }(A), n\right\}$ steps, where $p_{\text {min }}(A)$ is the degree of the minimal of polynomial of A.
(k) $r_{k}^{T} p_{j}=0, j=1,2, \cdots k-1$.

