- 1. Let $w \neq 0 \in \mathbb{R}^n$, $A = w^T w$, $B = w w^T$.
 - (a) Find the size of the matrices A and B.
 - (b) Find $||A||_p$ and $||B||_p$, $p = 1, 2, \infty$.
 - (c) Find the rank of A and B.
 - (d) Find $cond_p(A)$ and $cond_p(B)$ if they are meaningful.
 - (e) Find all eigenvalues and corresponding eigenvectors of A and B.
 - (f) Find the peudoinverse of A and B.
- 2. Let $A \in \mathbb{R}^{n,n}$ be a diagonalizable matrix, E is a perturbed matrix satisfying $||E|| \leq C\epsilon$. (a): show that

$$\min_{i} \left| \lambda_{i}(A) - \lambda_{i}(A + E) \right| \leq cond(S) ||E||,$$

where S is a matrix such that $S^{-1}AS = D = diag(\lambda_1(A), \lambda_2(A), \dots, \lambda_n(A))$. What conclusion can you get if $A = A^T$?

Hint: Consider $(A + E)x = \lambda_i(A + E)x$, and thus $(\lambda_i(A + E) - A)x = Ex$.

(b): If A and B are the following matrices, what are the eigenvalues for ech matrix? Find perturbation bounds for each individual eigenvalue.

	2	-1	0	0	0	0			2	-1	0	0	0	0]
A =	-1	2	-1	0	0	0		B =	0	2	0	0	0	0
	0	-1	2	-1	0	0	,		0	0	3	-1	0	0
	0	0	-1	2	$^{-1}$	0			0	0	0	3	-1	0
	0	0	0	-1	2	-1			0	0	0	0	3	-1
	0	0	0	0	-1	2			0	0	0	0	0	3

3.

(a) Show that the least squares solution of

$$\begin{bmatrix} 0_1 \\ B \\ 0_2 \end{bmatrix} x = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

is $x^* = B^{-1}b_2$, where 0_1 and 0_2 are zero matrices, and B is an invertible square matrix.

(b) Use the result you proved in Part a to solve the following least squares problems and calculate the 2-norm of the residual vector for each solution you computed.

Γ0	0	0 -	1	1	1					
	0	0	x =	$\begin{vmatrix} -1\\2\\-1\\1 \end{vmatrix}$		2	-1 0		0	
	0	0				-1	2	$\begin{array}{c ccc} 2 & -1 \\ -1 & 2 \end{array} x = \\ \end{array}$		0
2	1	-1					1		<i>x</i> =	0
0	-3	2			;	0	-1			0
	0	-					0	0		-8
0	0	1				0	0	0		1
0	0	0		1		L	0			L ⁻ -

4. Use the QR method to solve the over-determined system Ax = b, where

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & -4 \end{bmatrix}$$

- (a) $b = \begin{bmatrix} 3 & 0 & 0 & 6 & -8 \end{bmatrix}^T$.
- (b) $b = e_3 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}^T$.
- (c) Use the Given's rotation to find the least squares solution when $b = e_5 = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^T$. **Hint:** Use the result in previous problem to determine which element that you wish to put as zero.

Calculate the 2-norm of the residual vector for each solution you computed.

Hint: You can use Matlab for intermediate computation and verification. The solution in Matlab can be written as $x_s = pinv(A) * b$ which may not be the same as $x_{ls} = A \setminus b$.

5. (a): Find the singular value decomposition for the matrix (with the process)

$$\left[\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right].$$

(b): Use your result to solve the linear system of equations Ax = b, where $b = [2, 1]^T$. (c): Explain the meaning of the solution.

6. Given data: $y_i = \sin(2t_i) + 0.5 * \cos(5t_i) + \epsilon \operatorname{rand}((t(i)), i = 0, 1, \dots, m.$ $t_i = 1 + i(\pi - 1)/m$. Find the least squares solution using the following models. **Hint:** M = 10; t = 1 : (pi - 1)/M : pi; $y = \sin(2 * t) + 0.5 * \cos(5 * t) + 0.01. * rand(size(t));$

(a)
$$y(t) \sim \sum_{i=0}^{n} a_i t^i$$
.
(b) $y(t) \sim \sum_{i=0}^{int(n/2)} (a_i \cos(i * t) + b_i \sin(i * t))$.
(c) $y(t) \sim a_0 e^{a_1 t}$.

Take M = 10; n = 2 and n = 10, $\epsilon = 0$, and $\epsilon = 0.1$. Plot your approximations over the interval $(1, \pi)$ using 100 points $x_p = 1 : (pi - 1)/100 : pi$. Compare the true solution and approximated solutions when $\epsilon = 0$.