Please Read the Homework Guidelines Carefully.

1. Let $x=0 . d_{1} d_{2} \cdots d_{n} d_{n+1} \cdots \beta^{b}, d_{1} \neq 0,0 \leq d_{i} \leq \beta-1$. We can use the chopping method to express x as a floating number

$$
f l_{c}(x)=0 . d_{1} d_{2} \cdots d_{n} \beta^{b}
$$

Find upper bounds of the absolute and relative errors of $f l_{c}(x)$ approximating x. Compare the results with the results obtained from the rounding-off approach.
2. Let F be a computer number system of 64 bits. Find the following
(a) The largest and smallest number.
(b) The smallest normalized positive number.
(c) The smallest positive number.
(d) Give examples of underflow and overflow.
(e) The machine precision.
(f) Find upper bounds of the absolute and relative errors of $f l_{c}(x)$ approximating x using the rounding approach.

Note that the specifics may differ slightly with different computers and compilers.
3. Assume we use a computer to evaluate the following expressions

$$
\text { (a) } p=x y z, \quad \text { (b) } s=x+y+z
$$

where x, y, and z are real numbers. Find upper bounds of absolute and relative errors. Assume all the numbers involved are in the range of the computer number system. Analyze the error bounds.
(HINT: You can set $x_{1}=f l(x), y_{1}=f l(y), z_{1}=f l(z), p_{1}=f l\left(x_{1} y_{1}\right), p_{c}=f l\left(p_{1} z_{1}\right)$ is the computed product of x, y, and z. (Note: Pay attention to the upper bounds and absolute values, e.g., $\delta_{5} \leq 5 \epsilon$ is wrong, it should be $\left|\delta_{5}\right| \leq 5 \epsilon$.)
4. Design an algorithm (in pseudo-code form) to evaluate the following
(a) $\log (1+x) / x$ in the interval $[-0.5,0.5]$.
(b) $b-\sqrt{b^{2}-\delta}$, where b and δ are two parameters with $b^{2}-\delta \geq 0$.
(c) $\nabla \phi(x) /|\nabla \phi(x)|$ where $\phi(x, y)$ is a scalar function of x and y.

You need to consider all possible scenarios.
5. Which of the following two formulas in computing π is better?

$$
\begin{aligned}
& \pi=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\cdots\right) \\
& \pi=6\left(0.5+\frac{0.5^{3}}{2 \cdot 3}+\frac{3(0.5)^{5}}{2 \cdot 4 \cdot 5}+\frac{3 \cdot 5(0.5)^{7}}{2 \cdot 4 \cdot 6 \cdot 7}+\cdots\right)
\end{aligned}
$$

How many terms should be chosen such that the error is less than 10^{-6} ? You can write a short Matlab code to compare. Consider both accuracy and speed.
6. We can use the following three formulas to approximate the first derivative of a function $f(x)$ at x_{0}.

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \\
f^{\prime}\left(x_{0}\right) & \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h} \\
f^{\prime}\left(x_{0}\right) & \approx \frac{f\left(x_{0}\right)-f\left(x_{0}-h\right)}{h}
\end{aligned}
$$

When we use computers to find an approximation of a derivative (used in finite difference (FD) method, optimization, and many areas, we need to balance the errors from the algorithm (truncation error) and round-off errors (from computers).
(a) Which formula is the most accurate in theory? Hint: Find the absolute error using the Taylor expansion at $x=x_{0}: f\left(x_{0} \pm h\right)=f\left(x_{0}\right) \pm f^{\prime}\left(x_{0}\right) h+f^{\prime \prime}\left(x_{0}\right) h^{2} / 2 \pm f^{\prime \prime \prime}\left(x_{0}\right) h^{3} / 6+O\left(h^{4}\right)$.
(b) Write a program to compute the derivative with

- $f(x)=x^{2}, x_{0}=1.8$.
- $f(x)=e^{x} \sin x, x_{0}=0.55$.
$\boldsymbol{P l o t}$ the errors versus h using log-log plot with labels and legends if necessary. In the plot, h should range from 0.1 to the order of machine constant $\left(10^{-16}\right)$ with h being cut by half each time (i.e., $h=0.1, h=0.1 / 2, h=0.1 / 2^{2}, h=0.1 / 2^{3}, \cdots$, until $h \leq 10^{-16}$.)
$\boldsymbol{H i n t}$: You need to find the true derivative (analytic) values in order to compute and plot the errors.

Tabulate the absolute and relative errors corresponding to $h=0.1,0.1 / 2,0.1 / 4,0.1 / 8$, and $0.1 / 16$ (that is, difference choices of h compared with that used in the plots). The ratio (should be around 2 or 4) is defined as the quotient of two consecutive errors. Analyze and explain your plots and tables. What is the best h for each case with and without round-off errors?

$1 / h$	error (a)	ratio	error (b)	ratio	error (c)	ratio
10		-		-		-
20						
40						
80						
160						

The ratio is defined as, for example

$$
\text { ratio }=\frac{\mid \text { error for } n=10 \mid}{\mid \text { error for } n=20 \mid} .
$$

7. Mini-project: Find the relation between relative errors and significant digits.
