1. This problem provides a way in computing some special functions or integrals. (a): Use the asymptotic (linear approximation, i.e., $p=1$) and matching approach to compute the singular integral $\int_{0}^{\pi} \frac{\sin x}{\sqrt{x}} d x$ accurately to the machine precision (that is, as accurate as possible). Note that the true value is 'fresnels(sqrt(2))*sqrt $\left(2^{*}\right.$ pi) $=1.789662938968290$ ' using Matlab, where fresnels is the Fresnel sine function.
(b): Now use the sequence $r_{n}=\frac{\pi}{2^{n}}$ to calculate the integral: $I_{n}=\sum_{k=0}^{n-1} \int_{r_{k+1}}^{r_{k}} \frac{\sin x}{\sqrt{x}} d x$ to compute the integral until $\frac{\left|I_{n}-I_{n-1}\right|}{\left|I_{n}\right|}<t o l$.
(c): Compare the two methods to see which method that you think is better and why. Hint: You should call ('trapez()' in Matlab) or write a composite trapezoidal quadrature formula.
2. Consider the 'mid-point' and the 'trapezoidal' quadrature formulas on the square: $[0, h] \times[0, h]$. (a) Find the algebraic precision using polynomials in two dimensions including constant, linear, bilinear, quadratic and so on. (b): Find error estimates of the quadrature formulas for approximating $\iint_{R} f(x, y) d x d y$ in terms of h. Hint: Use the Taylor expansion in 2D.
(c): Repeat the process for the right triangle T_{h} determined by the three vertices: $(0,0),(h, 0)$, and $(0, h)$.
3. Use the Monte Carlo method to evaluate the integral $\iint_{\Omega} \sin (k x) \cos (k y) d x d y$, where $\Omega=[-1,1] \times$ $[-1,1]$ for $k=1, k=10$, and $k=100$. (a): Find the true value of the integration. (b): Implement the Monte Carlo method with 500 sample points for 10 runs and then average the results and compare with the true values. (c): Analyze your computed results and provide some suggestions or conclusions.

Hint: You need to either transform the domain or the randomly generated numbers.
4. Convert the IVP problem

$$
y^{\prime \prime \prime}+\beta\left(1-y^{2}\right)\left(y^{\prime}\right)^{2}+\cos y=0, \quad y(0)=1, y^{\prime}(0)=-1, y^{\prime \prime}(0)=1
$$

to a first order system.
5. Consider one of two linear multi-step methods (choose one)

$$
\begin{aligned}
y_{n+1} & =\alpha y_{n}+\frac{h}{2}\left(2(1-\beta) f_{n+1}+3 \beta f_{n}-\beta f_{n-1}\right) \\
\text { or } y_{n+1} & =\alpha y_{n-1}+\frac{h}{2}\left(2(1-\beta) f_{n+1}+3 \beta f_{n}-2 \beta f_{n-1}\right) .
\end{aligned}
$$

(a) Analyze consistency and order of the methods; determining the values α^{*} and β^{*} for which the resulting method has maximal order.
(b) Study the zero-stability of the method with $\alpha=\alpha^{*}$ and $\beta=\beta^{*}$; write its characteristic polynomial and using MATLAB, draw its region of absolute stability in the complex plane.
6. Consider the two-stage of RK method (it is also called the improved Euler method):

$$
\begin{aligned}
K_{1} & =f\left(x_{n}, y_{n}\right) \\
K_{2} & =f\left(x_{n+1}, y_{n}+h K_{1}\right) \\
y_{n+1} & =y_{n}+\frac{h}{2}\left(K_{1}+K_{2}\right)
\end{aligned}
$$

(a) Show the local truncation error is order of h^{2}.
(b) Discuss the zero and absolute stability of the algorithm. Find or plot the stability region.
7. Referring to mymovie.m and chemistry.m on the class web-page, use Matlab ODE-suite to solve the following IVP

$$
\begin{aligned}
& y_{1}^{\prime}=a-(b+1) y_{1}+y_{1}^{2} y_{2} \\
& y_{2}^{\prime}=b y_{1}-y_{1}^{2} y_{2} .
\end{aligned}
$$

Try the parameters $(a, b)=(1,3),(1,10),(1,20),(5,1), T=50,500$. Plot the history of the solution and phase plot. Find all the equilibriums and classify them (stable, unstable, center etc.). Do you think this problem is stiff? A stiff problem is that the eigenvalues of the linearized system have very different magnitude.
8. Extra Credit: This problem illustrates how we can combined different methods to solve problems. Implement the Crank-Nicolson scheme for the Lorenz equations using a non-linear system of equations solver or your own code.

$$
\begin{aligned}
& x^{\prime}=-\tau x+\tau y \\
& y^{\prime}=-x z+r x-y \\
& z^{\prime}=x y-\beta z .
\end{aligned}
$$

Try you method at least with one set of data $r=100, \tau=10, \beta=8 / 3$, final time $T=20$ and an initial data $[1,0,0]$. Plot the history of the solution $x(t), y(t), z(t)$, and phase plot.

Apply one step Richardson extrapolation to the final solution and compare with that of direct computation and provide a posterior error estimate.

Try several typical sets of data. Write a report on your algorithm and analysis, compare your numerical results with those from literature; and try to interpret your results.

