1. (a): Consider a triangle whose vertices are $\mathbf{x}_i = (x_i, y_i)$, i = 1, 2, 3. Assume that the area of the triangle is no-zero. Show that there is a unique linear function $u_h(x, y) = a_{0,0} + a_{1,0}x + a_{0,1}y$ that interpolates a function f(x, y) at three vertices. Thus, the interpolation can be written as $u_h(\mathbf{x}) = \sum_{i=1}^3 f(\mathbf{x}_i)\phi_i(\mathbf{x})$, where $\phi_i(\mathbf{x})$ is the basis functions satisfying $\phi_i(\mathbf{x}_j) = \delta_i^j$.

(b): **Optional:** Assuming that $f(\mathbf{x}) \in C^2$ and h is the longest side of the triangle, show that $|f(\mathbf{x}) - u_h(\mathbf{x})| \leq Ch^2$. So the interpolation is second order accurate.

- 2. Fin and list the Newton-Cotes coefficients, closed and open, for $0 \le n \le 6$. Which ones are stable? Hint: Use a symbolic software package, for example, Maple.
- 3. (a) Show that the Simpson quadrature rule has algebraic precision 3 by testing the polynomial basis function $\{1, x, x^2, x^3, x^4\}$. Therefore the Simpson quadrature rule is exact for any polynomial of $p_k(x)$ of degree $k \leq 3$.
 - (b) Consider the polynomial interpolation

$$p_3(a) = f(a),$$
 $p_3(b) = f(b),$
 $p_3(c) = f(c),$ $p'_3(c) = f'(c),$ $c = \frac{a+b}{2},$

We know that

$$f(x) - p_3(x) = \frac{f^{(4)}(\xi(x))}{4!}(x-a)(x-c)^2(x-b)$$

assuming $f(x) \in C^4(a, b)$. Use the error estimate above to show that

$$\int_{a}^{b} f(x)dx - \frac{b-a}{6}\left(f(a) + 4f(c) + f(b)\right) = -\frac{(b-a)^{5}}{2880}f^{(4)}(\eta).$$

(c) Using the error estimate above to show the following error estimate for the composite Simpson rule:

$$\int_{a}^{b} f(x)dx - S_{n} = -\frac{b-a}{2880}f^{(4)}(\eta)h^{4}.$$

- 4. Assume that $\frac{f^k(x)}{k!}$ are all O(1) quantities for all k's. If we wish to approximate $\int_0^1 f(x) dx$ with different quadrature methods such that the error is less than 10^{-10} , estimate the smallest n that is needed for the following methods:
 - (a) Composite trapezoidal formula.
 - (b) Composite Simpson formula.
 - (c) Romberg method.
- 5. (a) Find the coefficients of the following quadrature

$$\int_{0}^{1} f(x)dx \approx \alpha_{1}f(0) + \alpha_{2}f(1) + \alpha_{3}f'(0)$$

- (b) What is the algebraic precision of the quadrature formula?
- (c) Can you give an error estimate?
- 6. Find x_1 and x_2 such that the following quadrature

$$\int_{-1}^{1} f(x)dx \approx \frac{1}{3} \left(f(-1) + 2f(x_1) + 3f(x_2) \right)$$

has as high algebraic precision as possible.

7. Reformulate the following integrals to normal integrals.

(a)
$$\int_0^1 x^2 \log x dx.$$

(b)
$$\int_1^\infty \frac{dx}{(1+x)\sqrt{x}}.$$

(c)
$$\int_0^\pi \frac{\sin x}{x^{\mu}} dx, \quad 0 < \mu < 2.$$

- 8. Implement Romberg integration to approximate $\int_a^b f(x) dx$:
 - (a) $a = 0, b = \frac{\pi}{2}$. $f(x) = \frac{5e^{2x}}{e^{\pi} 2}$. Note that $\int_0^{\pi/2} f(x) dx = \frac{5(e^{\pi} 1)}{2(e^{\pi} 2)}$.
 - (b) $a = 0, b = 1, f(x) = x^2 \log(x)$, where $\log(x)$ is the natural logarithm. You should be able to find the exact solution by integration by parts. (**Hint:** Use $\log(x) \approx \log(x + \epsilon)$ to avoid the singularity. Take $\epsilon = 10^{-16}$, for example).
 - (c) Find the circumference (its length) of the ellipse $x^2 + \frac{y^2}{4} = 1$. (**Hint:** $L = \oint ds$. Write down the ellipse in terms of the parametric form $x = \cos t$; $y = 2 \sin t$, $ds = \sqrt{dx^2 + dy^2}$).

Use the computed approximations to estimate the errors. Analyze the results and compare with the exact error if possible.