1. (a): Consider a triangle whose vertices are $\mathbf{x}_{i}=\left(x_{i}, y_{i}\right), i=1,2,3$. Assume that the area of the triangle is no-zero. Show that there is a unique linear function $u_{h}(x, y)=a_{0,0}+a_{1,0} x+a_{0,1} y$ that interpolates a function $f(x, y)$ at three vertices. Thus, the interpolation can be written as $u_{h}(\mathbf{x})=\sum_{i=1}^{3} f\left(\mathbf{x}_{i}\right) \phi_{i}(\mathbf{x})$, where $\phi_{i}(\mathbf{x})$ is the basis functions satisfying $\phi_{i}\left(\mathbf{x}_{j}\right)=\delta_{i}^{j}$.
(b): Optional: Assuming that $f(\mathbf{x}) \in C^{2}$ and h is the longest side of the triangle, show that $\left|f(\mathbf{x})-u_{h}(\mathbf{x})\right| \leq C h^{2}$. So the interpolation is second order accurate.
2. Fin and list the Newton-Cotes coefficients, closed and open, for $0 \leq n \leq 6$. Which ones are stable? Hint: Use a symbolic software package, for example, Maple.
3. (a) Show that the Simpson quadrature rule has algebraic precision 3 by testing the polynomial basis function $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$. Therefore the Simpson quadrature rule is exact for any polynomial of $p_{k}(x)$ of degree $k \leq 3$.
(b) Consider the polynomial interpolation

$$
\begin{array}{ll}
p_{3}(a)=f(a), & p_{3}(b)=f(b) \\
p_{3}(c)=f(c), & p_{3}^{\prime}(c)=f^{\prime}(c),
\end{array} \quad c=\frac{a+b}{2} .
$$

We know that

$$
f(x)-p_{3}(x)=\frac{f^{(4)}(\xi(x))}{4!}(x-a)(x-c)^{2}(x-b)
$$

assuming $f(x) \in C^{4}(a, b)$. Use the error estimate above to show that

$$
\int_{a}^{b} f(x) d x-\frac{b-a}{6}(f(a)+4 f(c)+f(b))=-\frac{(b-a)^{5}}{2880} f^{(4)}(\eta)
$$

(c) Using the error estimate above to show the following error estimate for the composite Simpson rule:

$$
\int_{a}^{b} f(x) d x-S_{n}=-\frac{b-a}{2880} f^{(4)}(\eta) h^{4}
$$

4. Assume that $\frac{f^{k}(x)}{k!}$ are all $O(1)$ quantities for all k 's. If we wish to approximate $\int_{0}^{1} f(x) d x$ with different quadrature methods such that the error is less than 10^{-10}, estimate the smallest n that is needed for the following methods:
(a) Composite trapezoidal formula.
(b) Composite Simpson formula.
(c) Romberg method.
5. (a) Find the coefficients of the following quadrature

$$
\int_{0}^{1} f(x) d x \approx \alpha_{1} f(0)+\alpha_{2} f(1)+\alpha_{3} f^{\prime}(0)
$$

(b) What is the algebraic precision of the quadrature formula?
(c) Can you give an error estimate?
6. Find x_{1} and x_{2} such that the following quadrature

$$
\int_{-1}^{1} f(x) d x \approx \frac{1}{3}\left(f(-1)+2 f\left(x_{1}\right)+3 f\left(x_{2}\right)\right)
$$

has as high algebraic precision as possible.
7. Reformulate the following integrals to normal integrals.
(a) $\int_{0}^{1} x^{2} \log x d x$.
(b) $\int_{1}^{\infty} \frac{d x}{(1+x) \sqrt{x}}$.
(c) $\int_{0}^{\pi} \frac{\sin x}{x^{\mu}} d x, \quad 0<\mu<2$.
8. Implement Romberg integration to approximate $\int_{a}^{b} f(x) d x$:
(a) $a=0, b=\frac{\pi}{2} \cdot f(x)=\frac{5 e^{2 x}}{e^{\pi}-2}$. Note that $\int_{0}^{\pi / 2} f(x) d x=\frac{5\left(e^{\pi}-1\right)}{2\left(e^{\pi}-2\right)}$.
(b) $a=0, b=1, f(x)=x^{2} \log (x)$, where $\log (x)$ is the natural logarithm. You should be able to find the exact solution by integration by parts. (Hint: Use $\log (x) \approx \log (x+\epsilon)$ to avoid the singularity. Take $\epsilon=10^{-16}$, for example).
(c) Find the circumference (its length) of the ellipse $x^{2}+\frac{y^{2}}{4}=1$. (Hint: $L=\oint d s$. Write down the ellipse in terms of the parametric form $\left.x=\cos t ; y=2 \sin t, d s=\sqrt{d x^{2}+d y^{2}}\right)$.

Use the computed approximations to estimate the errors. Analyze the results and compare with the exact error if possible.

