
MA 780
Homework #2
Due Feb. 17

1. Given (xi, f(xi), f
′(xi)), i = 0, 1, · · · , n, n > 0. Let p2n+1(x) be the Hermite interpolation polynomial

satisfying

p2n+1(xi) = f(xi), p′2n+1(xi) = f ′(xi), i = 0, 1, · · · , n.

Show that if f(x) ∈ C2n+2, then we have the following error estimate

R(x) = f(x)− p2n+1(x) =
f (2n+2)(ξ(x))

(2n+ 2)!
ω2
n+1(x).

Give a least upper bound for the case n = 1.

2. (a) Show that there is no polynomial p3(x) that interpolates

f(−1) = 1, f ′(−1) = 1, f ′(1) = 2, f(2) = 1.

Hint: Use the un-determined coefficient method and show that the system of equations for the

coefficients does not have a solution. Explain as much as you can.

(b) Now we add two conditions

f(1) = 0, f ′′(1) = 2.

Use the divided difference table to find the polynomial interpolation and verify your result.

3. Let {xi}n0 , x0 = a, xn = b be a equally spaced nodal points for the interval [a, b], that is, xi+1− xi =

h = (b− a)/n is a constant. Assume also that u(x) ∈ C5[a, b] (can this be relaxed?).

(a) In the interval [xi−1, xi+1], we can approximate u(x) by a quadratic interpolation using nodal

points xi−1, xi, xi+1. From your interpolation function, find an approximation to u′′(xi) and an

error estimate. Hint: Use the second order divided difference.

(b) Using the formula we can get a linear system of equations to approximate the boundary value

problem

u′′(x) = f(x), a < x < b, u(a) = 0, u(b) = 0,

as

Ui−1 − 2Ui + Ui−1

h2
= f(xi), U0 = 0, Un = 0, i = 1, 2, · · ·n− 1,

where Ui ≈ u(xi). Write down the matrix-vector form ( AU = F ) of the linear system of

equations above.

(c) Write down the component form of the SOR(ω) method for the system of equations above. Do

the Jacobi, Gauss-Seidel, SOR(ω) converge?

Hint: The SOR(ω) method is xk+1 = (1−ω)xk +ωxk+1
Gauss−Seidel, which converges for 0 < ω < 2 for

this problem.



4. Write down the linear system of equations for the moments S′′3 (xj) = Mj for the periodic cubic spline

and simplify it for the equally spaced nodal points by setting h = xj −xj−1. Do some research about

how to solve the linear system of equations.

5. (a) Derive a quadratic spline S2(x) ∈ C1 that satisfies

S2(xi) = f(xi), i = 0, 1, · · · , n, and S′2(x0) = f ′(x0). (1)

Hint: Write the quadratic spline S2(x) as

S2(x) = ai + bi(x− xi) + ci(x− xi)(x− xi+1), x ∈ [xi, xi+1] ,

and derive a system of equations for ai, bi and ci.

(b) Extra credit: Let R(x) = f(x)− S2(x) and h = max{|xi+1 − xi|}. Show the following error

estimates if f(x) ∈ C3.

‖R′′‖∞ ≤ h‖f ′′′‖∞, excluding the nodes,

‖R′‖∞ ≤ h2‖f ′′′‖∞/8,
‖R‖∞ ≤ (xn − x0)h3‖f ′′′‖∞/8.

6. Programming Part:

Use a cubic spline (either the cardinal or B-splines, see text and pseudo-code there) assuming S′3(x0) =

f ′(x0) and S′3(xn) = f ′(xn) to approximate functions f(x) = cos(10πx) and f(x) = 1
1+25x2 in HW#1.

Plot the function and your approximation on the same plot. Plot also of the errors and compare with

the results from HW 1.

The project part can be done as group up to 4 people. You need to state your group in you HW.

Analysis can be done individually or in group. If you can not get your code working, you can use

Hermite cubic interpolation, or even piecewise linear interpolations. A couple of points may be

deducted though.

7. An extra credit project for the semester. Group work is OK.

This is example of how to simulate mean-curvature flows using a cubic spline. Assume that we

have a two-dimensional smooth and closed curve X(s, t) = (X(s, t), Y (s, t)) whose motion satisfies
dX
dt = nf(κ), where κ is the curvature of the curve, n is the normal direction, for example f(κ) = 1,

or f(κ) = −1, or f(κ) = Cκ.

(a) Initially, we can use a set of discrete points (Xk, Yk) to represent the curve at t = 0, k =

1, 2, · · ·N , X1 = XN+1, Y1 = YN+1. We can treat the points (Xk, Yk) as the function of the

arc-length s, such that s0 = 0, sk+1 = sk +
√

(Xk+1 −Xk)2 + (Yk+1 − Yk)2. Thus, we have

X0
k ≈ X(sk, t

0), Yk ≈ Y (sk, t
0), where the superscript is the time level, tm+1 = tm + ∆t with

t0 = 0.

(b) Use a cubic spline with the period boundary condition to approximate the curve to obtain

(X(s, tm), Y (s, tm)) so that we can get the tangential (τ ) and normal directions n, and the curva-

ture information, for example, τ = (dX(sk,t
k)

ds , dY (sk,t
m)

ds )/|τ |, where |τ | =
√

(dX(sk,tm)
ds )2 + (dY (sk,tm)

ds )2.

(c) Evolve the boundary using the Euler’s method Xm+1 = Xm + ∆tnmf(κm).



Hint: In continuous case, this is an initial value problem

dX(s, t)

dt
= nf(κ), t > 0, X(s,0) = X0(s). (2)

We can use forward Euler method to solve the problem

Xk+1 −Xk

∆t
= nkf(κk), k = 0, 1, · · · , (3)

where Xk is the initial position of the curve. A pseudo code is given below:

% Set-up

clear all; close all;

n=80; h=2/n; x=-1:h:1; y=x; % Domain: [-1, 1] x [-1, 1]

n1 = n; tfinal=0.5; ds = 2*pi/n1; theta=0: ds:2*pi-ds;

for m=1:n1; % An initial ellipse

X(m)=0.6*cos(theta(m)); Y(m) = 0.4*sin(theta(m));

end

plot(X,Y)

axis([-1 1 -1 1]); axis(’square’); hold % Visualize the initial curve

% Time loop

dt = h*h/2; t=0;

while t < tfinal

% Spline interpolation to get

for m=1: n1-1. % Need to do it for m=n1 separately.

dx = X(m+1)-X(m); dy = Y(m+1)-X(m); ds = sqrt( dx*dx + dy*dy + 1e-15);

dx = dx/ds dy = dy/ds; % The tangent direction

nx = -dy; ny=dx; % The normal direction

X1(m) = X(m) - dt*nx; Y1(m) = Y(m) - dt*ny; % f=-1;

end

m = n1;

%%%%% Fill in

t = t + dt;

plot(X1,Y1)

X=X1; Y= Y1; % Overwrite the old boundary data

end


