1. Let A be the Vandermonde matrix generated by $\{x_i\}, i = 0, \dots, n$. Show that

$$det(A) = \prod_{0 \le j < i \le n} (x_i - x_j),$$

and the solution of the polynomial interpolation exists and is unique if x_i 's are distinct. Hint: Use mathematical induction and consider the determinant of the following:

$$det \begin{vmatrix} 1 & x_0 & \cdots & x_0^n & x_0^{n+1} \\ 1 & x_1 & \cdots & x_1^n & x_1^{n+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^n & x_n^{n+1} \\ 1 & x & \cdots & x^n & x^{n+1} \end{vmatrix} = \phi(x).$$

It is easy to spot n roots of $\phi(x)$ (if two rows are the same). Write down the factorized form of $\phi(x)$ and then use the induction to find the coefficient of x^{n+1} . Finally, you can plug x_{n+1} in to $\phi(x)$ to get the desired result.

- 2. Let the nodal points be $x_i = 0, \pi/6, \pi/4$, and the function values be $y_i = \sin(x_i)$.
 - (a) Find the least squares approximation using $y = a_0 + a_1 x$. How is the solution defined?
 - (b) Suppose that we use $y = a_0 + a_1x + a_2x^2 + a_3x^3$. How to find the coefficients? How is the solution defined?
 - (c) Find *both* the Lagrange polynomial and Newton polynomial interpolations. Show the two results are the same. Approximate y(x) at $x = \pi/8$ and find the error $|\sin(\pi/8) p_2(\pi/8)|$.
 - (d) Give a least upper bound of the error $\max_{0 \le x \le \pi/4} |\sin x p_2(x)|$.

Hint: Use the error estimate and notice that $|\cos x| \le 1$, find the maximum/minimum of $\omega(x)$ between 0 and $\pi/4$.

3. Let $l_i(x)$ be the Lagrange polynomials, show the following:

$$\sum_{i=0}^{n} x_i^k l_i(x) = x^k, \qquad k = 0, 1, \cdots, n;$$
$$\sum_{i=0}^{n} (x_i - x)^k l_i(x) = 0, \qquad k = 1, 2, \cdots, n.$$

Hint: For the second equality, use the binomial expansion of $(x_i - x)^k$ and make use of the first equality. Note that $(a - b)^m = \sum_{k=0}^m (-1)^k C_m^k a^{m-k} b^k$.

- 4. Use simple method to find the following divided differences:
 - (a) $f[2^0, 2^1, \dots, 2^7]$ if $f(x) = x^7 + x^3 + 1$.

(b)
$$f[2^0, 2^1, \dots, 2^7, 2^8]$$
 if $f(x) = x^7 + x^3 + 1$.
(c) $f[x_0, x_1, x_2, \dots, x_p]$ if $f(x) = \omega_{n+1}(x) = \prod_{i=0}^n (x - x_i)$ assuming $p \le n$.

 $\mathbf{Hint:} \ \mathbf{Use}$

$$f[x_0, x_1, \cdots, x_n, x] = \frac{f^{(n+1)}(\xi)}{(n+1)!} \qquad f[x_0, x_1, \cdots, x_n] = \sum_{i=0}^n \frac{f(x_i)}{\omega'_{n+1}(x_i)}.$$

- 5. Programming Part: Implement the Newton interpolation formula (see the code on the class web-page, and Program 66 on page 342), debug/test your code, and analyze your results.
 - Use $\{0, 0.1, 0.2, \dots 0.9, 1\}$ as nodal points.
 - Use $\left\{\frac{k}{1000}\right\}$, $k = 0, 1, \dots, 1000$ as output points.
 - Plot the exact solution and the approximation from the polynomial interpolation on the same plot.
 - If you use Matlab, run Matlab function *interp1* and compare the CPU time (*Matlab function cputime*). **Hint:** In Matlab, type *help interp1* and *help cputime* for the usage. If the CPU numbers are too small, *use format short e*.
 - Plot the error plot. You should label, title all the plots. You can use Matlab command: *subplot* to put multiple plots into a single paper.
 - Do the test for the following functions:

(a)
$$f(x) = e^x$$

(b)
$$f(x) = \cos(10\pi x)$$
.

(c)
$$f(x) = \frac{1}{1 + 25x^2}$$

You should keep you code for late use. Note that: you need to submit your results and analysis, selected plots, along with your homework. Your programming code should be submitted to Moodle.