1. Let A be the Vandermonde matrix generated by $\left\{x_{i}\right\}, i=0, \cdots, n$. Show that

$$
\operatorname{det}(A)=\prod_{0 \leq j<i \leq n}\left(x_{i}-x_{j}\right)
$$

and the solution of the polynomial interpolation exists and is unique if x_{i} 's are distinct. Hint: Use mathematical induction and consider the determinant of the following:

$$
\operatorname{det}\left|\begin{array}{ccccc}
1 & x_{0} & \cdots & x_{0}^{n} & x_{0}^{n+1} \\
1 & x_{1} & \cdots & x_{1}^{n} & x_{1}^{n+1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & \cdots & x_{n}^{n} & x_{n}^{n+1} \\
1 & x & \cdots & x^{n} & x^{n+1}
\end{array}\right|=\phi(x)
$$

It is easy to spot n roots of $\phi(x)$ (if two rows are the same). Write down the factorized form of $\phi(x)$ and then use the induction to find the coefficient of x^{n+1}. Finally, you can plug x_{n+1} in to $\phi(x)$ to get the desired result.
2. Let the nodal points be $x_{i}=0, \pi / 6, \pi / 4$, and the function values be $y_{i}=\sin \left(x_{i}\right)$.
(a) Find the least squares approximation using $y=a_{0}+a_{1} x$. How is the solution defined?
(b) Suppose that we use $y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$. How to find the coefficients? How is the solution defined?
(c) Find both the Lagrange polynomial and Newton polynomial interpolations. Show the two results are the same. Approximate $y(x)$ at $x=\pi / 8$ and find the error $\left|\sin (\pi / 8)-p_{2}(\pi / 8)\right|$.
(d) Give a least upper bound of the error $\max _{0 \leq x \leq \pi / 4}\left|\sin x-p_{2}(x)\right|$.

Hint: Use the error estimate and notice that $|\cos x| \leq 1$, find the maximum/minimum of $\omega(x)$ between 0 and $\pi / 4$.
3. Let $l_{i}(x)$ be the Lagrange polynomials, show the following:

$$
\begin{aligned}
& \sum_{i=0}^{n} x_{i}^{k} l_{i}(x)=x^{k}, \quad k=0,1, \cdots, n ; \\
& \sum_{i=0}^{n}\left(x_{i}-x\right)^{k} l_{i}(x)=0, \quad k=1,2, \cdots, n .
\end{aligned}
$$

Hint: For the second equality, use the binomial expansion of $\left(x_{i}-x\right)^{k}$ and make use of the first equality. Note that $(a-b)^{m}=\sum_{k=0}^{m}(-1)^{k} C_{m}^{k} a^{m-k} b^{k}$.
4. Use simple method to find the following divided differences:
(a) $f\left[2^{0}, 2^{1}, \cdots, 2^{7}\right]$ if $f(x)=x^{7}+x^{3}+1$.
(b) $f\left[2^{0}, 2^{1}, \cdots, 2^{7}, 2^{8}\right]$ if $f(x)=x^{7}+x^{3}+1$.
(c) $f\left[x_{0}, x_{1}, x_{2}, \cdots, x_{p}\right]$ if $f(x)=\omega_{n+1}(x)=\prod_{i=0}^{n}\left(x-x_{i}\right)$ assuming $p \leq n$.

Hint: Use

$$
f\left[x_{0}, x_{1}, \cdots, x_{n}, x\right]=\frac{f^{(n+1)}(\xi)}{(n+1)!} \quad f\left[x_{0}, x_{1}, \cdots, x_{n}\right]=\sum_{i=0}^{n} \frac{f\left(x_{i}\right)}{\omega_{n+1}^{\prime}\left(x_{i}\right)}
$$

5. Programming Part: Implement the Newton interpolation formula (see the code on the class web-page, and Program 66 on page 342), debug/test your code, and analyze your results.

- Use $\{0,0.1,0.2, \cdots 0.9,1\}$ as nodal points.
- Use $\left\{\frac{k}{1000}\right\}, k=0,1, \cdots, 1000$ as output points.
- Plot the exact solution and the approximation from the polynomial interpolation on the same plot.
- If you use Matlab, run Matlab function interp1 and compare the CPU time (Matlab function cputime). Hint: In Matlab, type help interp1 and help cputime for the usage. If the CPU numbers are too small, use format short e.
- Plot the error plot. You should label, title all the plots. You can use Matlab command: subplot to put multiple plots into a single paper.
- Do the test for the following functions:
(a) $\mathrm{f}(\mathrm{x})=e^{x}$.
(b) $f(x)=\cos (10 \pi x)$.
(c) $f(x)=\frac{1}{1+25 x^{2}}$

You should keep you code for late use. Note that: you need to submit your results and analysis, selected plots, along with your homework. Your programming code should be submitted to Moodle.

