1. Which of the following problems have a unique solution? Why? (explain the reason(s), but no proof is needed). Or give condition that the solution exist and/or unique.
$A:\left\{\begin{array}{l}-u^{\prime \prime}=f, \quad 0<x<1, \\ u(0)=0, \\ u(1)=0 ;\end{array} \quad B:\left\{\begin{array}{l}-u^{\prime \prime}+u=f, \quad 0<x<1, \\ u^{\prime}(0)=0, \quad u^{\prime}(1)=0 ;\end{array} \quad C:\left\{\begin{array}{l}-u^{\prime \prime}+q(x) u=f, \quad 0<x<1, \\ u^{\prime}(0)=0, \quad u^{\prime}(1)=0 ;\end{array}\right.\right.\right.$
where $q(x) \geq q_{\text {min }}>0$. What happens if we relax the condition to $q(x) \geq 0$? Hint: Use the

Lax-Milgram Lemma.

2. Given

$$
\begin{aligned}
& u^{\prime \prime \prime \prime}(x)+q(x) u=f, \quad 0<x<1 \\
& u(0)=u^{\prime}(0)=0, \quad u(1)=0, \quad \alpha u^{\prime \prime}(1)+\beta u^{\prime}(1)=\gamma
\end{aligned}
$$

(a) Derive the weak form.
(b) Give sufficient conditions for $q(x), \alpha$, and β such that the weak form has a unique solution.
(c) Find an upper bound for the solution.
3. Derive the week form for the PDE

$$
-\left(a_{11} u_{x x}+2 a_{12} u_{x y}+a_{22} u_{y y}\right)+b_{1} u_{x}+q u=f(x, y), \quad(x, y) \in \Omega,\left.\quad u(x, y)\right|_{\partial \Omega}=0
$$

assume that all the coefficients are function of (x, y). What happens if the BC is part of Dirichlet $\left.u\right|_{\partial \Omega_{1}}=0$ and part of Nuemann $\left.u_{n}\right|_{\partial \Omega_{2}}=g(x, y)$?
4. (An eigenvalue problem, optional.) Consider

$$
\begin{align*}
& -\left(p u^{\prime}\right)^{\prime}+q u-\lambda u=0, \quad 0<x<\pi \tag{1}\\
& u(0)=0, \quad u(\pi)=0 \tag{2}
\end{align*}
$$

(a) Find the weak form of the problem and check whether the conditions of the Lax-Milgram Lemma are satisfied.
(b) Use the 1D FE package with linear basis functions and a uniform grid to solve the eigenvalue problem

$$
\begin{aligned}
& -\left(p u^{\prime}\right)^{\prime}+q u-\lambda u=0, \quad 0<x<\pi \\
& u(0)=0, u^{\prime}(\pi)+\alpha u(\pi)=0 \\
& \text { where } \quad p(x) \geq p_{\min }>0, q(x) \geq 0, \alpha \geq 0
\end{aligned}
$$

in each of the following two cases:
i. $p(x)=1, q(x)=1, \alpha=1$.
ii. $p(x)=1+x^{2}, q(x)=x, \alpha=3$.

Try to solve the eigenvalue problem with $M=5$ and $M=20$. Print out the eigenvalues but not the eigenfunctions. Plot all the eigenfunctions in a single plot for $M=5$, and plot two typical eigenfunctions for $M=20$ (6 plots in total).
Hint: The approximate eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{M}$ and the eigenfunction $u_{\lambda_{i}}(x)$ are the generalized eigenvalues of

$$
A x=\lambda B x
$$

where A is the stiffness matrix and $B=\left\{b_{i j}\right\}$ with $b_{i j}=\int_{0}^{\pi} \phi_{i}(x) \phi_{j}(x) d x$. You can generate the matrix B either numerically or analytically; and in Matlab you can use $[V, D]=E I G(A, B)$ to find the generalized eigenvalues and the corresponding eigenvectors. For a computed eigenvalue λ_{i}, the corresponding eigenfunction is

$$
u_{\lambda_{i}}(x)=\sum_{j=1}^{M} \alpha_{i, j} \phi_{j}(x)
$$

where $\left[\alpha_{i, 1}, \alpha_{i, 2}, \cdots, \alpha_{i, M}\right]^{T}$ is the eigenvector corresponding to the generalized eigenvalue.
Note: if we can find the eigenvalues and corresponding eigenfunctions, the solution to the differential equation can be expanded in terms of the eigenfunctions, similar to Fourier series.
5. Consider the Poisson equation

$$
\begin{aligned}
-\Delta u(x, y) & =1, \quad(x, y) \in \Omega \\
\left.u(x, y)\right|_{\partial \Omega} & =0
\end{aligned}
$$

where Ω is the unit square. Using a uniform triangulation, derive the stiffness matrix and the load vector for $N=2$, i.e. $\quad h=1 / 3$:
(a) The nodal points are ordered as $(1 / 3,1 / 3),(2 / 3,1 / 3) ;(1 / 3,2 / 3)$, and $(2 / 3,2 / 3)$.
(b) The nodal points are ordered as $((1 / 3,2 / 3),(2 / 3,1 / 3) ;(1 / 3,1 / 3)$, and $(2 / 3,2 / 3)$.

Write down the basis function centered at $(1 / 3,2 / 3)$ explicitly. You can use the formula from the book directly.
6. Use Matlab PDE toolbox to solve the following parabolic equation for $u(x, y, t)$ and make relevant plots:

$$
\begin{aligned}
u_{t} & =u_{x x}+u_{y y}, \quad(x, y) \in\left[\begin{array}{ll}
-1 & 1
\end{array}\right] \times\left[\begin{array}{ll}
-1 & 1
\end{array}\right] \\
u(x, y, 0) & =0
\end{aligned}
$$

The geometry and the boundary conditions are defined in Figure ??. Show a couple of plots of the solution (mesh, contour etc.). Find the global extrems of $u(x, y)$ using the computed solution. Are they attained at the boundary?

7. Down-load the Matlab source code f.m, my_assemb.m, uexact.m from Moodle or the class web-page. Use the exported mesh of the geometry of the third problem of the Lab practice from Matlab to solve the Poisson equation

$$
-\left(u_{x x}+u_{y y}\right)=f(x, y)
$$

The Dirichlet boundary condition is determined from the exact solution

$$
u(x, y)=\frac{1}{4}\left(x^{2}+y^{4}\right) \sin \pi x \cos 4 \pi y
$$

Find $f(x, y)$. Plot the domain and mesh. Find the total of degree of the freedom. Plot the solution and the error.
Extra credit: Compute the errors in $\|E\|_{0}$, i.e. the $L^{2},\|E\|_{a}$, i.e. the energy norm; and $\|E\|_{1}$, i.e. the H^{1} norm. What can you expect the convergence order for all the norms?

