1. This problem deals with the following boundary value problem:

$$
-u^{\prime \prime}(x)+u(x)=f(x), \quad u(0)=u(1)=0
$$

(a) Show that the weak form (variational form) is given by

$$
\left(u^{\prime}, v^{\prime}\right)+(u, v)=(f, v), \quad \forall v(x) \in H_{0}^{1}(0,1)
$$

where

$$
\begin{aligned}
(u, v) & =\int_{0}^{1} u(x) v(x) d x \\
H_{0}^{1}(0,1) & =\left\{v(x), \quad v(0)=v(1)=0, \quad \int_{0}^{1} v^{2} d x<\infty, \quad \int_{0}^{1} v_{x}^{2} d x<\infty\right\}
\end{aligned}
$$

(b) Assume given a uniform mesh $x_{i}=i h, i=0,1, \cdots, n, h=1 / n$, write down the linear system of equations using both the finite difference and finite element methods. Are they same?
(c) Take $n=3$, write down all the basis (hat) functions. Sketch or plot the basis functions, see also Problem 4 for a hint.
(d) Derive the linear system of the equations for the FEM approximation:

$$
u_{h}=\sum_{j=1}^{3} \alpha_{j} \phi_{j}(x)
$$

when $f(x)=1$.
(e) Solve the problem $(f(x)=1)$ and plot the finite element solution and the true solution in one plot. hint: he solution is $u(x)=C_{1} \cosh x+C_{2} \sinh x+1$ or $u(x)=C_{1} e^{x}+C_{2} e^{-x}+1$. Use the BC's to determine the constants C_{1} and C_{2}.
(f) Plot the error.
2. State the different formulations (D, V, and M) for solving $-\left(\beta(x) u^{\prime}(x)\right)^{\prime}=f(x), 0<x<1$, and $u(0)=u(1)=0$. Explain the conditions on $\beta(x), f(x)$, and $u(x)$ that are necessary for each formulation. Explain the advantages and disadvantages when we use a finite difference or finite method for solving this problem.

Computer Projects: Download the Matlab files from
https://zhilin.math.ncsu.edu/TEACHING/MA587/index.html
Read the notes to understand what the codes are doing and test them.
3. This problem needs to modify drive.m, f.m and soln.m. Use the Matlab codes to solve

$$
-u^{\prime \prime}(x)=f(x), \quad u(0)=u(1)=0
$$

Try two different triangulations: (a) the one given in drive.m; (b) the uniform grid $x_{i}=i * h, h=1 / M$, $i=0,1, \cdots, M$. Take $M=10$. This can be done in Matlab using the command: $x=0: 0.1: 1$.
Use the grids to solve the problems for the following $f(x)$ or exact $u(x)$ (derived analytically):
(a) $u(x)=\sin (\pi x)$, what is $f(x)$?
(b) $f(x)=x^{3}$, what is $u(x)$?
(c) (extra credit) $f(x)=\delta(x-1 / 2)$, what is $u(x)$?

Make sure that the error is reasonably small.
4. This problem needs to modify fem1d.m, drive.m, f.m and soln.m. Assume we know that

$$
\int_{x_{i}}^{x_{i+1}} \phi_{i}(x) \phi_{i+1}(x) d x=\frac{h}{6}
$$

where $h=\left(x_{i+1}-x_{i}\right), \phi_{i}$ and ϕ_{i+1} are the hat function centered at x_{i} and x_{i+1} respectively. Use the Matlab codes to solve

$$
-u^{\prime \prime}(x)+u(x)=f(x), \quad u(0)=u(1)=0
$$

Try to use the uniform grid $x=0: 0.1: 1$ in Matlab, for the following exact $u(x)$:
(a) $u(x)=\sin (\pi x)$, what is $f(x)$?
(b) $u(x)=x(1-x) / 2$, what is $f(x) ?$

