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§24.2 GAUSS QUADRATURE FOR TRIANGLES

§24.1. Introduction

This Chapter continues with the computer implementation of two-dimensional finite elements.
It covers the programming of isoparametric triangular elements for the plane stress problem.
Triangular elements bring two sui generis implementation quirks with respect to quadrilateral
elements:

(1) The numerical integration rules for triangles are not product of one-dimensional Gauss rules,
as in the case of quadrilaterals. They are instead specialized to the triangle geometry.

(2) The computation of x-y partial derivatives and the element-of-area scaling by the Jacobian
determinant must account for the fact that the triangular coordinates ζ1, ζ2 and ζ3 do not form
an independent set.

We deal with these issues in the next two sections.

§24.2. Gauss Quadrature for Triangles

The numerical integration schemes for quadrilaterals introduced in §17.3 and implemented in §23.2
are built as “tensor products” of two one-dimensional Gauss formulas. On the other hand, Gauss
rules for triangles are not derivable from one-dimensional rules, and must be constructed especially
for the triangular geometry.

§24.2.1. Requirements for Triangle Gauss Rules

Gauss quadrature rules for triangles must possess triangular symmetry in the following sense:

If the sample point (ζ1, ζ2, ζ3) is present in a Gauss integration rule with
weight w, then all other points obtainable by permuting the three triangular
coordinates arbitrarily must appear in that rule, and have the same weight. (24.1)

This constraint guarantees that the result of the quadrature process will not depend on element node
numbering.1 If the Gauss point abcissas ζ1, ζ2, and ζ3 are different, (24.1) forces six equal-weight
sample points to be present in the rule, because 3! = 6. If two triangular coordinates are equal, the
six points coalesce to three, and (24.1) forces three equal-weight sample points to be present. Finally,
if the three coordinates are equal, which can only happen for the centroid ζ1 = ζ2 = ζ3 = 1/3, the
six points coalesce to one.

Remark 24.1. It follows that the number of sample points in triangle Gauss quadrature rules that satisfy (24.1)
must be of the form 6i + 3 j + k, where i and j are nonnegative integers and k is 0 or 1. Consequently there
are no rules with 2, 5 or 8 points.

1 It would disconcerting to users, to say the least, to have the FEM solution depend on how nodes are numbered.
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(a) rule=1                                     (b) rule=3                                   (c) rule=−3
 degree=1                                      degree=2                                       degree=2

(d) rule=6                                          (e) rule=7
 degree=4                                           degree=5
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Figure 24.1. Location of sample points, marked as dark circles, of five Gauss quadrature rules for constant
metric (a.k.a. superparametric) 6-node triangles (these have straight sides with side nodes located at the midpoints).

Weight written to 5 places near each sample point; sample-point circle areas are proportional to weight.

Additional requirements for a Gauss rule to be numerically acceptable are:

All sample points must be inside the triangle (or on the triangle boundary)
and all weights must be positive. (24.2)

This is called a positivity condition. It insures that the element internal energy evaluated by numerical
quadrature is nonnegative definite.

A rule is said to be of degree n if it integrates exactly all polynomials in the triangular coordinates
of order n or less when the Jacobian determinant is constant, and there is at least one polynomial
of order n + 1 that is not exactly integrated by the rule.

Remark 24.2. The positivity requirement (24.2) is automatically satisfied in quadrilaterals by using Gauss
product rules, since the points are always inside while all weights are positive. Consequently it was not
necessary to call attention to it. On the other hand, for triangles there are Gauss rules with as few as 4 points
that violate positivity.

§24.2.2. Superparametric Triangles

We first consider superparametric (constant metric) straight-sided triangles whose geometry is fully
defined by the three corner nodes. Over such triangles the Jacobian determinant defined below is
constant. The five simplest Gauss rules that satisfy the requirements (24.1) and (24.2) have 1, 3, 3,
6 and 7 points, respectively. The two rules with 3 points differ in the location of the sample points.
The five rules are depicted in Figure 24.1 over 6-node straight-sided triangles; for such triangles to
be superparametric the side nodes must be located at the midpoint of the sides.
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§24.2 GAUSS QUADRATURE FOR TRIANGLES

One point rule. The simplest Gauss rule for a triangle has one sample point located at the centroid.
For a straight sided triangle,

1

A

∫
	e

F(ζ1, ζ2, ζ3) d	 ≈ F( 1
3 , 1

3 , 1
3 ), (24.3)

in which A is the triangle area

A =
∫

	e

d	 = 1
2 det

[ 1 1 1
x1 x2 x3

y1 y2 y3

]
= 1

2

[
(x2 y3 −x3 y2)+(x3 y1 −x1 y3)+(x1 y2 −x2 y1)

]
. (24.4)

This rule is shown in Figure 24.1(a). It has degree 1, meaning that it integrates exactly up to linear
polynomials in {ζ1, ζ2, ζ3}. For example, F = 4 − ζ1 + 2ζ2 − ζ3 is exactly integrated by (24.3).

Three Point Rules. The next two rules in order of simplicity contain three sample points:

1

A

∫
	e

F(ζ1, ζ2, ζ3) d	 ≈ 1
3 F( 2

3 , 1
6 , 1

6 ) + 1
3 F( 1

6 , 2
3 , 1

6 ) + 1
3 F( 1

6 , 1
6 , 2

3 ). (24.5)

1

A

∫
	e

F(ζ1, ζ2, ζ3) d	 ≈ 1
3 F( 1

2 , 1
2 , 0) + 1

3 F(0, 1
2 , 1

2 ) + 1
3 F( 1

2 , 0, 1
2 ). (24.6)

These are shown in Figures (24.1)(b,c). Both rules are of degree 2; that is, they integrate exactly up to
quadratic polynomials in the triangular coordinates. For example, F = 6+ζ1+3ζ3+ζ 2

2 −ζ 2
3 +3ζ1ζ3

is integrated exactly by either rule. Formula (24.6) is called the midpoint rule.

Six and Seven Point Rules. There is a 4-point rule of degree 3, but it has a negative weight at
the centroid and so violates (24.2). There are no symmetric rules with 5 points. The next useful
rules have six and seven points. There is a 6-point rule of degree 4 and a 7-point rule of degree
5, which integrate exactly up to quartic and quintic polynomials in {ζ1, ζ2, ζ3}, respectively. The
7-point rule includes the centroid as sample point. Both rules comply with (24.2). The abcissas
and weights are expressable as rational combinations of square roots of integers and fractions. The
exact expressions are listed in the Mathematica implementation discussed in §24.2.4. Their sample
point configurations are depicted in Figure 24.1(d,e).

§24.2.3. Variable Metric Triangles

If the triangle has variable metric, as in the curved sided 6-node triangle geometries pictured in
Figure 24.2, the foregoing formulas need adjustment because the element of area d	 becomes a
function of position. Consider the general case of an isoparametric element with n nodes and shape
functions Ni . In §24.3 it is shown that the differential area element is given by

d	 = J dζ1 dζ2 dζ3, J = 1
2 det




1 1 1
n∑

i=1

xi
∂ Ni

∂ζ1

n∑
i=1

xi
∂ Ni

∂ζ2

n∑
i=1

xi
∂ Ni

∂ζ3

n∑
i=1

yi
∂ Ni

∂ζ1

n∑
i=1

yi
∂ Ni

∂ζ2

n∑
i=1

yi
∂ Ni

∂ζ3


 (24.7)

Here J is the Jacobian determinant, which plays the same role as J in the isoparametric quadrilater-
als. If the metric is simply defined by the 3 corners, as in Figure 24.1, the geometry shape functions
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(a) rule=1                                       (b) rule=3                                     (c) rule=−3
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Figure 24.2. Location of sample points (dark circles) of five Gauss quadrature rules
for curved sided 6-node triangles. Weight written to 5 places near each sample point;

sample-point circle areas are proportional to weight.

are N1 = ζ1, N2 = ζ2 and N3 = ζ3. Then the foregoing determinant reduces to that of (24.4), and
J = A everywhere. But for general (curved) geometries J = J (ζ1, ζ2, ζ3), and the triangle area A
cannot be factored out of the integration rules. For example the one point rule becomes∫

	e

F(ζ1, ζ2, ζ3) d	 ≈ J ( 1
3 , 1

3 , 1
3 ) F( 1

3 , 1
3 , 1

3 ). (24.8)

whereas the midpoint rule becomes∫
	e

F(ζ1, ζ2, ζ3) d	 ≈ 1
3 J ( 1

2 , 1
2 , 0) F( 1

2 , 1
2 , 0) + 1

3 J (0, 1
2 , 1

2 ) F(0, 1
2 , 1

2 ) + 1
3 J ( 1

2 , 0, 1
2 ) F( 1

2 , 0, 1
2 ).

(24.9)

These can be expressed more compactly by saying that the Gauss integration rule is applied to J F .

§24.2.4. Triangle Gauss Quadrature Information

The 5 rules pictured above (24.1) and (24.2) are implemented in the module TrigGaussRuleInfo
listed in Figure 24.3. The module is invoked as

{ { ζ1,ζ2,ζ3 },w } = TrigGaussRuleInfo[{ rule,numer },point] (24.10)

The module has three arguments: rule, numer, and point. The first two are grouped in a two-item
list. Argument rule, which can be 1, 3, −3, 6 or 7, defines the integration formula as follows.
Abs[rule] is the number of sample points. Of the two 3-point choices, if rule is −3 the midpoint
rule is picked, else if +3 the 3-interior point rule is chosen. Logical flag numer is set to True or
False to request floating-point or exact information, respectively.

Argument point is the index of the sample point, which may range from 1 through Abs[rule].

24–6



§24.3 PARTIAL DERIVATIVE COMPUTATION

TrigGaussRuleInfo[{rule_,numer_},point_]:= Module[
 {zeta,p=rule,i=point,g1,g2, info={{Null,Null,Null},0}  },
  If [p== 1, info={{1/3,1/3,1/3},1}];
  If [p== 3, info={{1,1,1}/6,1/3}; info[[1,i]]=2/3];
  If [p==-3, info={{1,1,1}/2,1/3}; info[[1,i]]=0  ];
  If [p== 6,  g1=(8-Sqrt[10]+Sqrt[38-44*Sqrt[2/5]])/18;
              g2=(8-Sqrt[10]-Sqrt[38-44*Sqrt[2/5]])/18;
     If [i<4, info={{g1,g1,g1},(620+Sqrt[213125-
              53320*Sqrt[10]])/3720}; info[[1,i]]=1-2*g1];
     If [i>3, info={{g2,g2,g2},(620-Sqrt[213125-
              53320*Sqrt[10]])/3720}; info[[1,i-3]]=1-2*g2]];
  If [p== 7,  g1=(6-Sqrt[15])/21; g2=(6+Sqrt[15])/21;
     If [i<4,      info={{g1,g1,g1},(155-Sqrt[15])/1200};
                   info[[1,i]]=  1-2*g1];
     If [i>3&&i<7, info={{g2,g2,g2},(155+Sqrt[15])/1200};
                   info[[1,i-3]]=1-2*g2];
     If [i==7,     info={{1/3,1/3,1/3},9/40} ]];    
  If [numer, Return[N[info]], Return[Simplify[info]]];
 ];

Figure 24.3. Module to get triangle Gauss quadrature rule information.

The module returns the list shown in (24.10) in which ζ1, ζ2, ζ3 are the triangular coordinates of
the sample point, and w is the integration weight. If rule is not implemented, the module returns
{ { Null,Null,Null },0 }.
Example 24.1.

The call TrigGaussRuleInfo[{ 3,False },1] returns { { 2/3,1/6,1/6 },1/3 }.
Since numer is False, all of these are exact values.

The call TrigGaussRuleInfo[{ 3,True },2] returns
{ { 0.1666666666666667,0.6666666666666667,0.1666666666666667 },0.3333333333333333 }.
These floating point-values, requested by numer=True, are correct to 16 places.

§24.3. Partial Derivative Computation

The calculation of Cartesian partial derivatives is illustrated in this section for the 6-node triangle
shown in Figure 24.4. The results are applicable to iso-P triangles with any number of nodes.

The element geometry is defined by the corner coordinates
{xi , yi }, with i = 1, 2, . . . 6. Corners are numbered 1,2,3 in
counterclockwise sense. Side nodes are numbered 4,5,6 oppo-
site to corners 3,1,2, respectively. Side nodes may be arbitrarily
located within positive Jacobian constraints as discussed in
§19.4.2. The triangular coordinates are as usual denoted by
ζ1, ζ2 and ζ3, which satisfy ζ1 + ζ2 + ζ3 = 1. The quadratic
displacement field {ux (ζ1, ζ2, ζ3), uy(ζ1, ζ2, ζ3)} is defined by
the 12 node displacements {uxi , uyi }, i = 1, 2, . . . , 6, as
per the iso-P quadratic interpolation formula (16.10)–(16.11).
That formula is repeated here for convenience:

1
4

5
6

2

3

Figure 24.4. The 6-node iso-P triangle.
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1
x
y

ux

uy


 =




1 1 1 1 1 1
x1 x2 x3 x4 x5 x6
y1 y2 y3 y4 y5 y6

ux1 ux2 ux3 ux4 ux5 ux6
uy1 uy2 uy3 uy4 uy5 uy6







N e
1

N e
2

N e
3

N e
4

N e
5

N e
6


 , (24.11)

in which the shape functions and their natural derivatives are

NT =




N e
1

N e
2

N e
3

N e
4

N e
5

N e
6


 =




ζ1(2ζ1−1)

ζ2(2ζ2−1)

ζ3(2ζ3−1)

4ζ1ζ2

4ζ2ζ3

4ζ3ζ1


 ,

∂NT

∂ζ1
=




4ζ1−1
0
0

4ζ2

0
4ζ3


 ,

∂NT

∂ζ2
=




0
4ζ2−1

0
4ζ1

4ζ3

0


 ,

∂NT

∂ζ3
=




0
0

4ζ3−1
0

4ζ2

4ζ1


 .

(24.12)

§24.3.1. Cartesian Coordinate Partials

In this and following sections the superscript e of shape functions will be omitted for brevity. The
bulk of the shape function logic is concerned with the computation of the partial derivatives of the
shape functions with respect to x and y at any point in the element. For this purpose consider a
generic scalar function w(ζ1, ζ2, ζ3) that is quadratically interpolated over the triangle by

w = w1 N1 + w2 N2 + w3 N3 + w4 N4 + w5 N5 + w6 N6 = [ w1 w2 w3 w4 w5 w6 ] NT . (24.13)

Symbol w may stand for 1, x , y, ux or uy , which are interpolated in the iso-P representation (24.11),
or other element-varying quantities such as thickness, temperature, etc. Taking partials of (24.13)
with respect to x and y and applying the chain rule twice yields

∂w

∂x
=

∑
wi

∂ Ni

∂x
=

∑
wi

(
∂ Ni

∂ζ1

∂ζ1

∂x
+ ∂ Ni

∂ζ2

∂ζ2

∂x
+ ∂ Ni

∂ζ3

∂ζ3

∂x

)
,

∂w

∂y
=

∑
wi

∂ Ni

∂y
=

∑
wi

(
∂ Ni

∂ζ1

∂ζ1

∂y
+ ∂ Ni

∂ζ2

∂ζ2

∂y
+ ∂ Ni

∂ζ3

∂ζ3

∂y

)
,

(24.14)

where all sums are understood to run over i = 1, . . . 6. In matrix form:

[ ∂w
∂x
∂w
∂y

]
=


 ∂ζ1

∂x
∂ζ2
∂x

∂ζ3
∂x

∂ζ1
∂y

∂ζ2
∂y

∂ζ3
∂y







∑
wi

∂ Ni
∂ζ1∑

wi
∂ Ni
∂ζ2∑

wi
∂ Ni
∂ζ3


 . (24.15)

Exchanging left- and right-hand sides of (24.15) and transposing yields

[ ∑
wi

∂ Ni
∂ζ1

∑
wi

∂ Ni
∂ζ2

∑
wi

∂ Ni
∂ζ3

]



∂ζ1
∂x

∂ζ1
∂y

∂ζ2
∂x

∂ζ2
∂y

∂ζ3
∂x

∂ζ3
∂y


 = [ ∂w

∂x
∂w
∂y

]
. (24.16)
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§24.3 PARTIAL DERIVATIVE COMPUTATION

Now make w ≡ 1, x, y and stack the results row-wise:




∑ ∂ Ni
∂ζ1

∑ ∂ Ni
∂ζ2

∑ ∂ Ni
∂ζ3∑

xi
∂ Ni
∂ζ1

∑
xi

∂ Ni
∂ζ2

∑
xi

∂ Ni
∂ζ3∑

yi
∂ Ni
∂ζ1

∑
yi

∂ Ni
∂ζ2

∑
yi

∂ Ni
∂ζ3







∂ζ1
∂x

∂ζ1
∂y

∂ζ2
∂x

∂ζ2
∂y

∂ζ3
∂x

∂ζ3
∂y


 =




∂1
∂x

∂1
∂y

∂x
∂x

∂x
∂y

∂y
∂x

∂y
∂y


 . (24.17)

But ∂x/∂x = ∂y/∂y = 1 and ∂1/∂x = ∂1/∂y = ∂x/∂y = ∂y/∂x = 0 because x and y are
independent coordinates. It is shown in Remark 24.3 below that, if

∑
Ni = 1, the entries of the

first row of the coefficient matrix are equal to a constant C . These entries can be scaled to unity
because the first row of the right-hand side is null. Consequently we arrive at a system of linear
equations of order 3 with two right-hand sides:




1 1 1∑
xi

∂ Ni
∂ζ1

∑
xi

∂ Ni
∂ζ2

∑
xi

∂ Ni
∂ζ3∑

yi
∂ Ni
∂ζ1

∑
yi

∂ Ni
∂ζ2

∑
yi

∂ Ni
∂ζ3







∂ζ1
∂x

∂ζ1
∂y

∂ζ2
∂x

∂ζ2
∂y

∂ζ3
∂x

∂ζ3
∂y


 =

[ 0 0
1 0
0 1

]
. (24.18)

§24.3.2. Solving the Jacobian System

By analogy with quadrilateral elements, the coefficient matrix of (24.18) will be called the Jacobian
matrix and denoted by J. Its determinant scaled by one half is equal to the Jacobian J = 1

2 det J used
in the expression of the area element introduced in §24.2.3. For compactness (24.18) is rewritten

J P =

 1 1 1

Jx1 Jx2 Jx3

Jy1 Jy2 Jy3







∂ζ1
∂x

∂ζ1
∂y

∂ζ2
∂x

∂ζ2
∂y

∂ζ3
∂x

∂ζ3
∂y


 =

[ 0 0
1 0
0 1

]
. (24.19)

If J 	= 0, solving this system gives


∂ζ1
∂x

∂ζ1
∂y

∂ζ2
∂x

∂ζ2
∂y

∂ζ3
∂x

∂ζ3
∂y


 = 1

2J

[ Jy23 Jx32

Jy31 Jx13

Jy12 Jx21

]
= P, (24.20)

in which Jx ji = Jx j − Jxi , Jyji = Jyj − Jyi and J = 1
2 det J = 1

2 (Jx21 Jy31 − Jy12 Jx13). Substituting
into (24.14) we arrive at

∂w

∂x
=

∑
wi

∂ Ni

∂x
=

∑ wi

2J

(
∂ Ni

∂ζ1
Jy23 + ∂ Ni

∂ζ2
Jy31 + ∂ Ni

∂ζ3
Jy12

)
,

∂w

∂y
=

∑
wi

∂ Ni

∂y
=

∑ wi

2J

(
∂ Ni

∂ζ1
Jx32 + ∂ Ni

∂ζ2
Jx13 + ∂ Ni

∂ζ3
Jx21

)
.

(24.21)
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In particular, the shape function derivatives are

∂ Ni

∂x
= 1

2J

(
∂ Ni

∂ζ1
Jy23 + ∂ Ni

∂ζ2
Jy31 + ∂ Ni

∂ζ3
Jy12

)
,

∂ Ni

∂y
= 1

2J

(
∂ Ni

∂ζ1
Jx32 + ∂ Ni

∂ζ2
Jx13 + ∂ Ni

∂ζ3
Jx21

)
.

(24.22)

in which the natural derivatives ∂ Ni/∂ζ j can be read off (24.12). Using the 3 × 2 P matrix defined
in (24.20) yields finally the compact form[

∂ Ni
∂x

∂ Ni
∂y

]
=

[
∂ Ni
∂ζ1

∂ Ni
∂ζ2

∂ Ni
∂ζ3

]
P. (24.23)

Remark 24.3. Here is the proof that each first row entry of the 3 × 3 matrix in (24.17) is a numerical
constant, say C . Suppose the shape functions are polynomials of order n in the triangular coordinates, and let
Z = ζ1 + ζ2 + ζ3. The completeness identity is

S =
∑

Ni = 1 = c1 Z + c2 Z 2 + . . . cn Zn, c1 + c2 + . . . + cn = 1. (24.24)

where the ci are element dependent scalar coefficients. Differentiating S with respect to the ζi ’s and setting
Z = 1 yields

C =
∑ ∂ Ni

∂ζ1
=

∑ ∂ Ni

∂ζ2
=

∑ ∂ Ni

∂ζ3
= c1 + 2c2 Z + c3 Z 3 + . . . (n − 1)Zn−1 = c1 + 2c2 + 3c3 + . . . + cn−1

= 1 + c2 + 2c3 + . . . + (n − 2)cn,

(24.25)

which proves the assertion. For the 3-node linear triangle, S = Z and C = 1. For the 6-node quadratic
triangle, S = 2Z 2 − Z and C = 3. For the 10-node cubic triangle, S = 9Z 3/2 − 9Z 2/2 + Z and C = 11/2.
Because the first equation in (24.17) is homogeneous, the C’s can be scaled to unity.

§24.4. The Six-Node Triangle

This section derives the stiffness matrix of the 6-node (quadratic) plane stress triangle by specializing
the results of the previous section.

§24.4.1. Quadratic Triangle Shape Function Module

Taking the dot products of the triangle-coordinate partials given in (24.12) with the node coordinates
we obtain the entries of the Jacobian matrix of (24.19):

Jx1 = x1ζ̂1 + 4(x4ζ2 + x6ζ3), Jx2 = x2ζ̂2 + 4(x5ζ3 + x4ζ1), Jx3 = x3ζ̂3 + 4(x6ζ1 + x5ζ2),

Jy1 = y1ζ̂1 + 4(y4ζ2 + y6ζ3), Jy2 = y2ζ̂2 + 4(y5ζ3 + y4ζ1), Jy3 = y3ζ̂3 + 4(y6ζ1 + y5ζ2),

(24.26)

in which ζ̂1 = 4ζ1 − 1, ζ̂2 = 4ζ2 − 1, and ζ̂3 = 4ζ3 − 1. From these J can be constructed, and
shape function partials ∂ Ni/∂x and ∂ Ni/∂y explicitly obtained from (24.22). Somewhat simpler
expressions, however, result by using the following “hierarchical” side node coordinates:

�x4 = x4 − 1
2 (x1 + x2), �x5 = x5 − 1

2 (x2 + x3), �x6 = x6 − 1
2 (x3 + x1),

�y4 = y4 − 1
2 (y1 + y2), �y5 = y5 − 1

2 (y2 + y3), �y6 = y6 − 1
2 (y3 + y1).

(24.27)
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Trig6IsoPShapeFunDer[ncoor_,tcoor_]:= Module[
  {ζ1,ζ2,ζ3,x1,x2,x3,x4,x5,x6,y1,y2,y3,y4,y5,y6,
  dx4,dx5,dx6,dy4,dy5,dy6,Jx21,Jx32,Jx13,Jy12,Jy23,Jy31,
  Nf,dNx,dNy,Jdet}, {ζ1,ζ2,ζ3}=tcoor;  
  {{x1,y1},{x2,y2},{x3,y3},{x4,y4},{x5,y5},{x6,y6}}=ncoor;
  dx4=x4-(x1+x2)/2; dx5=x5-(x2+x3)/2; dx6=x6-(x3+x1)/2; 
  dy4=y4-(y1+y2)/2; dy5=y5-(y2+y3)/2; dy6=y6-(y3+y1)/2;
  Nf={ζ1*(2*ζ1-1),ζ2*(2*ζ2-1),ζ3*(2*ζ3-1),4*ζ1*ζ2,4*ζ2*ζ3,4*ζ3*ζ1};
  Jx21= x2-x1+4*(dx4*(ζ1-ζ2)+(dx5-dx6)*ζ3);
  Jx32= x3-x2+4*(dx5*(ζ2-ζ3)+(dx6-dx4)*ζ1);
  Jx13= x1-x3+4*(dx6*(ζ3-ζ1)+(dx4-dx5)*ζ2);
  Jy12= y1-y2+4*(dy4*(ζ2-ζ1)+(dy6-dy5)*ζ3);
  Jy23= y2-y3+4*(dy5*(ζ3-ζ2)+(dy4-dy6)*ζ1);
  Jy31= y3-y1+4*(dy6*(ζ1-ζ3)+(dy5-dy4)*ζ2);
  Jdet = Jx21*Jy31-Jy12*Jx13;
  dNx= {(4*ζ1-1)*Jy23,(4*ζ2-1)*Jy31,(4*ζ3-1)*Jy12,4*(ζ2*Jy23+ζ1*Jy31),
         4*(ζ3*Jy31+ζ2*Jy12),4*(ζ1*Jy12+ζ3*Jy23)}/Jdet;
  dNy= {(4*ζ1-1)*Jx32,(4*ζ2-1)*Jx13,(4*ζ3-1)*Jx21,4*(ζ2*Jx32+ζ1*Jx13),
         4*(ζ3*Jx13+ζ2*Jx21),4*(ζ1*Jx21+ζ3*Jx32)}/Jdet;
  Return[Simplify[{Nf,dNx,dNy,Jdet}]]
];

Figure 24.5. Shape function module for 6-node quadratic triangle.

Geometrically these represent the deviations from midpoint positions, whence for a superparametric
element �x4 = �x5 = �x6 = �y4 = �y5 = �y6 = 0. The Jacobian coefficients become

Jx21 = x21 + 4(�x4(ζ1−ζ2) + (�x5−�x6)ζ3), Jx32 = x32 + 4(�x5(ζ2−ζ3) + (�x6−�x4)ζ1),

Jx13 = x13 + 4(�x6(ζ3−ζ1) + (�x4−�x5)ζ2), Jy12 = y12 + 4(�y4(ζ2−ζ1) + (�y6−�y5)ζ3),

Jy23 = y23 + 4(�y5(ζ3−ζ2) + (�y4−�y6)ζ1), Jy31 = y31 + 4(�y6(ζ1−ζ3) + (�y5−�y4)ζ2).

(24.28)

(Note that if all midpoint deviations vanish, Jx ji = x ji and Jyji = y ji .) From this one gets
J = 1

2 det J = 1
2 (Jx21 Jy31 − Jy12 Jx13) and

P = 1

2J

[ y23 + 4(�y5(ζ3−ζ2) + (�y4−�y6)ζ1) x32 + 4(�x5(ζ2−ζ3) + (�x6−�x4)ζ1)

y31 + 4(�y6(ζ1−ζ3) + (�y5−�y4)ζ2) x13 + 4(�x6(ζ3−ζ1) + (�x4−�x5)ζ2)

y12 + 4(�y4(ζ2−ζ1) + (�y6−�y5)ζ3) x21 + 4(�x4(ζ1−ζ2) + (�x5−�x6)ζ3)

]
.

(24.29)

and the Cartesian derivatives of the shape functions are

∂NT

∂x
= 1

2J




(4ζ1 − 1)Jy23

(4ζ2 − 1)Jy31

(4ζ3 − 1)Jy12

4(ζ2 Jy23 + ζ1 Jy31)

4(ζ3 Jy31 + ζ2 Jy12)

4(ζ1 Jy12 + ζ3 Jy23)


 ,

∂NT

∂y
= 1

2J




(4ζ1 − 1)Jx32

(4ζ2 − 1)Jx13

(4ζ3 − 1)Jx21

4(ζ2 Jx32 + ζ1 Jx13)

4(ζ3 Jx13 + ζ2 Jx21)

4(ζ1 Jx21 + ζ3 Jx32)


 . (24.30)

These calculations are implemented in the Mathematica shape function moduleTrig6IsoPShapeFunDer,
listed in Figure 24.5. The module is invoked as

{ Nf,dNx,dNy,Jdet }= Trig6IsoPShapeFunDer[ncoor,tcoor] (24.31)
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Trig6IsoPMembraneStiffness[ncoor_,Emat_,th_,options_]:= 
 Module[{i,k,p=3,numer=False,h=th,tcoor,w,c,
  Nf,dNx,dNy,Jdet,Be,Ke=Table[0,{12},{12}]},
  If [Length[options]>=1, numer=options[[1]]];
  If [Length[options]>=2, p=    options[[2]]];
  If [!MemberQ[{1,-3,3,6,7},p], Print["Illegal p"]; Return[Null]];
  For [k=1, k<=Abs[p], k++,  
      {tcoor,w}= TrigGaussRuleInfo[{p,numer},k];
      {Nf,dNx,dNy,Jdet}= Trig6IsoPShapeFunDer[ncoor,tcoor];
      If [numer, {Nf,dNx,dNy,Jdet}=N[{Nf,dNx,dNy,Jdet}]];
      If [Length[th]==6, h=th.Nf]; c=w*Jdet*h/2;
      Be= {Flatten[Table[{dNx[[i]],0       },{i,6}]],
           Flatten[Table[{0,       dNy[[i]]},{i,6}]],
           Flatten[Table[{dNy[[i]],dNx[[i]]},{i,6}]]};
      Ke+=c*Transpose[Be].(Emat.Be); 
      ]; If[!numer,Ke=Simplify[Ke]]; Return[Ke]
 ];

Figure 24.6. Stiffness matrix module for 6-node plane stress triangle.

The two arguments are ncoor and tcoor. The first one is the list of {xi , yi } coordinates of the six
nodes. The second is the list of three triangular coordinates { ζ1, ζ2, ζ3 } of the location at which the
shape functions and their Cartesian derivatives are to be computed.

The module returns { Nf,dNx,dNy,Jdet } as module value. Here Nf collects the shape function
values, dNx and dNy the x and y shape function derivatives, respectively, and Jdet is the determinant
of matrix J, equal to 2J in the notation used here.

§24.4.2. Six-Node Triangle Stiffness Matrix

The numerically integrated stiffness matrix is

Ke =
∫

	e

hBT EB d	 ≈
p∑

i=1

wi F(ζ1i , ζ2i , ζ3i ), where F(ζ1, ζ2, ζ3) = hBT EB J. (24.32)

Here p denotes the number of sample points of the Gauss rule being used, wi is the integration weight
for the i th sample point, ζ1i , ζ2i , ζ3i are the sample point triangular coordinates and J = 1

2 det J. This
data is provided by module TrigGaussRuleInfo. For the 6-node triangle (24.32) is implemented
in module Trig6IsoPMembraneStiffness, listed in Figure 24.6. The module is invoked as

Ke = Trig6IsoPMembraneStiffness[ncoor,Emat,th,options] (24.33)

The arguments are:

ncoor The list of node coordinates arranged as { { x1,y1 },{ x2,y2 }, ... { x6,y6 } }.
Emat The plane stress elasticity matrix

E =
[ E11 E12 E13

E12 E22 E23
E13 E23 E33

]
(24.34)

arranged as { { E11,E12,E33 },{ E12,E22,E23 },{ E13,E23,E33 } }.
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√
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√
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Figure 24.7. Six-node triangle test elements: (a) constant metric (a.k.a. superparametric),
(b) variable metric with nodes placed on a unit circle.

th Plate thickness specified as either a scalarhor a six-entry list: { h1,h2,h3,h4,h5,h6 }.
The one-entry form specifies uniform thickness h. The six-entry form is used to
specify an element of variable thickness, in which case the entries are the six node
thicknesses and h is interpolated quadratically.

options Processing options list. May contain two items: { numer,rule } or one: { numer }.
numer is a logical flag. If True, the computations are forced to proceed in floating-
point arithmetic. For symbolic or exact arithmetic work set numer to False.

rule specifies the triangle Gauss rule as described in §24.2.4; rule may be 1, 3,
−3, 6 or 7. For the 6-node element the three point rules are sufficient to get the
correct rank. If omitted rule = 3 is assumed.

The module returns Ke as an 12 × 12 symmetric matrix pertaining to the following node-by-node
arrangement of nodal displacements:

ue = [ ux1 uy1 ux2 uy2 ux3 uy3 ux4 uy4 ux5 uy5 ux6 uy6 ]T . (24.35)

§24.4.3. Test on Constant Metric Six-Node Triangle

ClearAll[Em,ν,a,b,e,h]; h=1; Em=288; ν=1/3;
ncoor={{0,0},{6,2},{4,4},{3,1},{5,3},{2,2}};
Emat=Em/(1-ν^2)*{{1,ν,0},{ν,1,0},{0,0,(1-ν)/2}};
Print["Emat=",Emat//MatrixForm]
Ke=Trig6IsoPMembraneStiffness[ncoor,Emat,h,{False,3}];  
Ke=Simplify[Ke];  Print[Chop[Ke]//MatrixForm];
Print["eigs of Ke=",Chop[Eigenvalues[N[Ke]]]];

Figure 24.8. Script to form Ke of test triangle of Figure 24.7(a).

The stiffness module of Figure 24.6 is tested on two triangle geometries, one with straight sides and
constant metric and one with curved sides and highly variable metric. The straight sided triangle
geometry, shown in Figure 24.7(a), has the corner nodes placed at (0, 0), (6, 2) and (4, 4) with side
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nodes 4,5,6 at the midpoints of the sides. The element has unit plate thickness. The material is
isotropic with E = 288 and ν = 1/3.

The test script is listed in Figure 24.8. The stiffness matrix Ke is computed by the three-interior-
point Gauss rule, specified as p=3. The computed Ke for integration rules with 3 or more points
are identical since those rules are exact for this element if the metric is constant, which is the case
here. That stiffness is

Ke =




54 27 18 0 0 9 −72 0 0 0 0 −36
27 54 0 −18 9 36 0 72 0 0 −36 −144
18 0 216 −108 54 −36 −72 0 −216 144 0 0
0 −18 −108 216 −36 90 0 72 144 −360 0 0
0 9 54 −36 162 −81 0 0 −216 144 0 −36
9 36 −36 90 −81 378 0 0 144 −360 −36 −144

−72 0 −72 0 0 0 576 −216 0 −72 −432 288
0 72 0 72 0 0 −216 864 −72 −288 288 −720
0 0 −216 144 −216 144 0 −72 576 −216 −144 0
0 0 144 −360 144 −360 −72 −288 −216 864 0 144
0 −36 0 0 0 −36 −432 288 −144 0 576 −216

−36 −144 0 0 −36 −144 288 −720 0 144 −216 864




(24.36)

Its eigenvalues are:

[ 1971.66 1416.75 694.82 545.72 367.7 175.23 157.68 57.54 12.899 0 0 0 ]
(24.37)

The 3 zero eigenvalues pertain to the three independent rigid-body modes. The 9 other ones are
positive. Consequently the computed Ke has the correct rank of 9.

§24.4.4. Test on Circle-Shaped Six-Node Triangle

A highly distorted test geometry places the 3 corners at the vertices of an equilateral triangle:
{−1/2, 0}, {1/2, 0}, and {0,

√
3/2}, whereas the 3 side nodes are located at {0, −1/(2

√
3)},

{1/2, 1/
√

3} and {−1/2, 1/
√

3}. The result is that the six nodes lie on a circle of radius 1/
√

3, as
shown in Figure 24.7(b). The element has unit thickness. The material is isotropic with E = 504
and ν = 0. The stiffness Ke is evaluated for four rank-sufficient rules: 3,-3,6,7, using the script
of Figure 24.9.

ClearAll[Em,ν,h]; h=1; Em=7*72; ν=0; h=1;
{x1,y1}={-1,0}/2; {x2,y2}={1,0}/2; {x3,y3}={0,Sqrt[3]}/2;
{x4,y4}={0,-1/Sqrt[3]}/2; {x5,y5}={1/2,1/Sqrt[3]}; 
{x6,y6}={-1/2,1/Sqrt[3]};
ncoor= {{x1,y1},{x2,y2},{x3,y3},{x4,y4},{x5,y5},{x6,y6}};
Emat=Em/(1-ν^2)*{{1,ν,0},{ν,1,0},{0,0,(1-ν)/2}};
For [i=2,i<=5,i++, p={1,-3,3,6,7}[[i]];
     Ke=Trig6IsoPMembraneStiffness[ncoor,Emat,h,{True,p}];
     Ke=Chop[Simplify[Ke]];
     Print["Ke=",SetPrecision[Ke,4]//MatrixForm];
     Print["Eigenvalues of Ke=",Chop[Eigenvalues[N[Ke]],.0000001]] 
  ];

Figure 24.9. Script to form Ke for the circle-shaped triangle of Figure 24.7(b), using 4 integration rules.

24–14



§24.4 THE SIX-NODE TRIANGLE

For rule=3 the result (printed to 4 places because of the SetPrecision statement in script) is


344.7 75.00 −91.80 21.00 −86.60 −24.00 −124.7 −72.00 −20.78 −36.00 −20.78 36.00
75.00 258.1 −21.00 −84.87 18.00 −90.07 96.00 0 −36.00 20.78 −132.0 −103.9

−91.80 −21.00 344.7 −75.00 −86.60 24.00 −124.7 72.00 −20.78 −36.00 −20.78 36.00
21.00 −84.87 −75.00 258.1 −18.00 −90.07 −96.00 0 132.0 −103.9 36.00 20.78

−86.60 18.00 −86.60 −18.00 214.8 0 41.57 0 −41.57 144.0 −41.57 −144.0
−24.00 −90.07 24.00 −90.07 0 388.0 0 −41.57 −24.00 −83.14 24.00 −83.14
−124.7 96.00 −124.7 −96.00 41.57 0 374.1 0 −83.14 −72.00 −83.14 72.00
−72.00 0 72.00 0 0 −41.57 0 374.1 −72.00 −166.3 72.00 −166.3
−20.78 −36.00 −20.78 132.0 −41.57 −24.00 −83.14 −72.00 374.1 0 −207.8 0
−36.00 20.78 −36.00 −103.9 144.0 −83.14 −72.00 −166.3 0 374.1 0 −41.57
−20.78 −132.0 −20.78 36.00 −41.57 24.00 −83.14 72.00 −207.8 0 374.1 0

36.00 −103.9 36.00 20.78 −144.0 −83.14 72.00 −166.3 0 −41.57 0 374.1




(24.38)

For rule=-3:


566.4 139.0 129.9 21.00 79.67 8.000 −364.9 −104.0 −205.5 −36.00 −205.5 −28.00
139.0 405.9 −21.00 62.93 50.00 113.2 64.00 −129.3 −36.00 −164.0 −196.0 −288.7
129.9 −21.00 566.4 −139.0 79.67 −8.000 −364.9 104.0 −205.5 28.00 −205.5 36.00
21.00 62.93 −139.0 405.9 −50.00 113.2 −64.00 −129.3 196.0 −288.7 36.00 −164.0
79.67 50.00 79.67 −50.00 325.6 0 −143.2 0 −170.9 176.0 −170.9 −176.0
8.000 113.2 −8.000 113.2 0 646.6 0 −226.3 8.000 −323.3 −8.000 −323.3

−364.9 64.00 −364.9 −64.00 −143.2 0 632.8 0 120.1 −104.0 120.1 104.0
−104.0 −129.3 104.0 −129.3 0 −226.3 0 485.0 −104.0 0 104.0 0
−205.5 −36.00 −205.5 196.0 −170.9 8.000 120.1 −104.0 521.9 −64.00 −60.04 0
−36.00 −164.0 28.00 −288.7 176.0 −323.3 −104.0 0 −64.00 595.8 0 180.1
−205.5 −196.0 −205.5 36.00 −170.9 −8.000 120.1 104.0 −60.04 0 521.9 64.00
−28.00 −288.7 36.00 −164.0 −176.0 −323.3 104.0 0 0 180.1 64.00 595.8




(24.39)

The stiffness for rule=6 is omitted to save space. For rule=7:


661.9 158.5 141.7 21.00 92.53 7.407 −432.1 −117.2 −190.2 −29.10 −273.8 −40.61
158.5 478.8 −21.00 76.13 49.41 125.3 50.79 −182.7 −29.10 −156.6 −208.6 −341.0
141.7 −21.00 661.9 −158.5 92.53 −7.407 −432.1 117.2 −273.8 40.61 −190.2 29.10
21.00 76.13 −158.5 478.8 −49.41 125.3 −50.79 −182.7 208.6 −341.0 29.10 −156.6
92.53 49.41 92.53 −49.41 387.3 0 −139.8 0 −216.3 175.4 −216.3 −175.4
7.407 125.3 −7.407 125.3 0 753.4 0 −207.0 7.407 −398.5 −7.407 −398.5

−432.1 50.79 −432.1 −50.79 −139.8 0 723.6 0 140.2 −117.2 140.2 117.2
−117.2 −182.7 117.2 −182.7 0 −207.0 0 562.6 −117.2 4.884 117.2 4.884
−190.2 −29.10 −273.8 208.6 −216.3 7.407 140.2 −117.2 602.8 −69.71 −62.78 0
−29.10 −156.6 40.61 −341.0 175.4 −398.5 −117.2 4.884 −69.71 683.3 0 207.9
−273.8 −208.6 −190.2 29.10 −216.3 −7.407 140.2 117.2 −62.78 0 602.8 69.71
−40.61 −341.0 29.10 −156.6 −175.4 −398.5 117.2 4.884 0 207.9 69.71 683.3




(24.40)

24–15



Chapter 24: IMPLEMENTATION OF ISO-P TRIANGULAR ELEMENTS

The eigenvalues of these matrices are:

Rule Eigenvalues of Ke

3 702.83 665.11 553.472 553.472 481.89 429.721 429.721 118.391 118.391 0 0 0
−3 1489.80 1489.80 702.833 665.108 523.866 523.866 481.890 196.429 196.429 0 0 0

6 1775.53 1775.53 896.833 768.948 533.970 533.970 495.570 321.181 321.181 0 0 0
7 1727.11 1727.11 880.958 760.719 532.750 532.750 494.987 312.123 312.123 0 0 0

(24.41)

Since the metric of this element becomes highly distorted near its boundary, the stiffness matrix
entries and eigenvalues change significantly as the integration formulas are advanced beyond the +3
rule (because the sample points get closer to the boundary). As can be seen, however, Ke remains
rank-sufficient.

§24.5. *The Ten-Node (Cubic) Triangle

The 10-node cubic triangle, depicted in Figure 24.10, is rarely used as such in applications because of the
difficulty of combining it with other elements. Nevertheless the derivation of the element modules is instructive
as this triangle has other and more productive uses as a generator of more practical elements with “drilling”
rotational degrees of freedom at corners for modeling shells. Such transformations are studied in advanced
FEM courses.

The geometry of the triangle is defined by the coordinates of the ten nodes. A notational warning: the interior
node is labeled as 0 instead of 10 — see Figure 24.10 — to avoid confusion with notation such as x12 = x1 − x2

for coordinate differences.

§24.5.1. *Cubic Triangle Shape Function Module

The shape functions obtained in Exercise 18.1 are N1 = 1
2 ζ1(3ζ1 − 1)(3ζ1 − 2), N2 = 1

2 ζ2(3ζ2 − 1)(3ζ2 − 2),
N3 = 1

2 ζ3(3ζ3 − 1)(3ζ3 − 2), N4 = 9
2 ζ1ζ2(3ζ1 − 1), N5 = 9

2 ζ1ζ2(3ζ2 − 1), N6 = 9
2 ζ2ζ3(3ζ2 − 1), N7 =

9
2 ζ2ζ3(3ζ3 − 1), N8 = 9

2 ζ3ζ1(3ζ3 − 1), N9 = 9
2 ζ3ζ1(3ζ1 − 1) and N0 = 27ζ1ζ2ζ3. Their natural derivatives are

∂NT

∂ζ1
= 9

2




2
9 −2ζ1+3ζ 2

1
0
0

ζ2(6ζ1−1)

ζ2(3ζ2−1)

0
0

ζ3(3ζ3−1)

ζ3(6ζ1−1)

6ζ2ζ3




,
∂NT

∂ζ2
= 9

2




0
2
9 −2ζ2+3ζ 2

2
0

ζ1(3ζ1−1)

ζ1(6ζ2−1)

ζ3(6ζ2−1)

ζ3(3ζ3−1)

0
0

6ζ1ζ3




,
∂NT

∂ζ3
= 9

2




0
0

2
9 −2ζ3+3ζ 2

3
0
0

ζ2(3ζ2−1)

ζ2(6ζ3−1)

ζ1(6ζ3−1)

ζ1(3ζ1−1)

6ζ1ζ2




. (24.42)

As in the case of the 6-node triangle it is convenient to introduce the deviations from thirdpoints and centroid:
�x4 = x4 − 1

3 (2x1+x2), �x5 = x5 − 1
3 (x1+2x2), �x6 = x6 − 1

3 (2x2+x3), �x7 = x7 − 1
3 (x2+2x3),

�x8 = x8 − 1
3 (2x3+x1), �x9 = x9 − 1

3 (x3+2x1), �x0 = x0 − 1
3 (x1+x2+x3), �y4 = y4 − 1

3 (2y1+y2),
�y5 = y5 − 1

3 (y1+2y2), �y6 = y6 − 1
3 (2y2+y3), �y7 = y7 − 1

3 (y2+2y3), �y8 = y8 − 1
3 (2y3+y1),

�y9 = y9 − 1
3 (y3+2y1), and �y0 = y0 − 1

3 (y1 + y2 + y3).
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Figure 24.10. The 10-node cubic plane stress triangle: (a) arbitrary geometry,
(b) constant metric triangle tested in §24.5.2.

Using (24.22) and (24.42), the shape function partial derivatives can be worked out to be

∂NT

∂x
= 9

4J




Jy23(
2
9 − 2ζ1 + 3ζ 2

1 /2)

Jy31(
2
9 − 2ζ2 + 3ζ 2

2 /2)

Jy12(
2
9 − 2ζ3 + 3ζ 2

3 /2)

Jy31ζ1(3ζ1 − 1) + Jy23ζ2(6ζ1 − 1)

Jy23ζ2(3ζ2 − 1) + Jy31ζ1(6ζ2 − 1)

Jy12ζ2(3ζ2 − 1) + Jy31ζ3(6ζ2 − 1)

Jy31ζ3(3ζ3 − 1) + Jy12ζ2(6ζ3 − 1)

Jy23ζ3(3ζ3 − 1) + Jy12ζ1(6ζ3 − 1)

Jy12ζ1(3ζ1 − 1) + Jy23ζ3(6ζ1 − 1)

6(Jy12ζ1ζ2 + Jy31ζ1ζ3 + Jy23ζ2ζ3)




,
∂NT

∂y
= 9

4J




Jx32(
2
9 − 2ζ1 + 3ζ 2

1 /2)

Jx13(
2
9 − 2ζ2 + 3ζ 2

2 /2)

Jx21(
2
9 − 2ζ3 + 3ζ 2

3 /2)

Jx13ζ1(3ζ1 − 1) + Jx32ζ2(6ζ1 − 1)

Jx32ζ2(3ζ2 − 1) + Jx13ζ1(6ζ2 − 1)

Jx21ζ2(3ζ2 − 1) + Jx13ζ3(6ζ2 − 1)

Jx13ζ3(3ζ3 − 1) + Jx21ζ2(6ζ3 − 1)

Jx32ζ3(3ζ3 − 1) + Jx21ζ1(6ζ3 − 1)

Jx21ζ1(3ζ1 − 1) + Jx32ζ3(6ζ1 − 1)

6(Jx21ζ1ζ2 + Jx13ζ1ζ3 + Jx32ζ2ζ3)




.

(24.43)

where the expressions of the Jacobian coefficients are

Jx21 = x21 + 9
2

[
�x4

(
ζ1(3ζ1−6ζ2−1)+ζ2

) + �x5

(
ζ2(1−3ζ2+6ζ1)−ζ1

) + �x6ζ3(6ζ2−1)

+ �x7ζ3(3ζ3−1) + �x8ζ3(1−3ζ3) + �x9ζ3(1−6ζ1) + 6�x0ζ3(ζ1−ζ2)
]
,

Jx32 = x32 + 9
2

[
�x4ζ1(1−3ζ1) + �x5ζ1(1−6ζ2) + �x6

(
ζ2(3ζ2−6ζ3−1)+ζ3

)
+ �x7

(
ζ3(1−3ζ3+6ζ2)−ζ2

) + �x8ζ1(6ζ3−1) + �x9ζ1(3ζ1−1) + 6�x0ζ1(ζ2−ζ3)
]
,

Jx13 = x13 + 9
2

[
�x4(6ζ1−1)ζ2 + �x5ζ2(3ζ2−1) + �x6ζ2(1−3ζ2) + �x7ζ2(1−6ζ3)

+ �x8

(
ζ3(3ζ3−6ζ1−1)+ζ1

) + �x9

(
ζ1(1−3ζ1+6ζ3)−ζ3

) + 6�x0ζ2(ζ3−ζ1)
]
,

(24.44)

and

Jy12 = y12 − 9
2

[
�y4

(
ζ1(3ζ1−6ζ2−1)+ζ2

) + �y5(ζ2(1−3ζ2+6ζ1)−ζ1) + �y6ζ3(6ζ2−1)

+ �y7ζ3(3ζ3−1) + �y8ζ3(1−3ζ3) + �y9ζ3(1−6ζ1) + 6�y0ζ3(ζ1−ζ2)
]
,

Jy23 = y23 − 9
2

[
�y4ζ1(1−3ζ1) + �y5ζ1(1−6ζ2) + �y6

(
ζ2(3ζ2−6ζ3−1)+ζ3

)
+ �y7

(
ζ3(1−3ζ3+6ζ2)−ζ2

) + �y8ζ1(6ζ3−1) + �y9ζ1(3ζ1−1) + 6�y0ζ1(ζ2−ζ3)
]
,

Jy31 = y31 − 9
2

[
�y4(6ζ1−1)ζ2 + �y5ζ2(3ζ2−1) + �y6ζ2(1−3ζ2) + �y7ζ2(1−6ζ3)

+ �y8

(
ζ3(3ζ3−6ζ1−1)+ζ1

) + �y9

(
ζ1(1−3ζ1+6ζ3)−ζ3

) + 6�y0ζ2(ζ3−ζ1)
]
.

(24.45)

24–17



Chapter 24: IMPLEMENTATION OF ISO-P TRIANGULAR ELEMENTS

Trig10IsoPShapeFunDer[ncoor_,tcoor_]:= Module[
  {ζ1,ζ2,ζ3,x1,x2,x3,x4,x5,x6,x7,x8,x9,x0,y1,y2,y3,y4,y5,y6,y7,y8,y9,y0,
   dx4,dx5,dx6,dx7,dx8,dx9,dx0,dy4,dy5,dy6,dy7,dy8,dy9,dy0,
  Jx21,Jx32,Jx13,Jy12,Jy23,Jy31,Nf,dNx,dNy,Jdet}, 
 {{x1,y1},{x2,y2},{x3,y3},{x4,y4},{x5,y5},{x6,y6},{x7,y7},
  {x8,y8},{x9,y9},{x0,y0}}=ncoor;  {ζ1,ζ2,ζ3}=tcoor;     
  dx4=x4-(2*x1+x2)/3; dx5=x5-(x1+2*x2)/3; dx6=x6-(2*x2+x3)/3; 
  dx7=x7-(x2+2*x3)/3; dx8=x8-(2*x3+x1)/3; dx9=x9-(x3+2*x1)/3; 
  dy4=y4-(2*y1+y2)/3; dy5=y5-(y1+2*y2)/3; dy6=y6-(2*y2+y3)/3; 
  dy7=y7-(y2+2*y3)/3; dy8=y8-(2*y3+y1)/3; dy9=y9-(y3+2*y1)/3;
  dx0=x0-(x1+x2+x3)/3; dy0=y0-(y1+y2+y3)/3; 
  Nf={ζ1*(3*ζ1-1)*(3*ζ1-2),ζ2*(3*ζ2-1)*(3*ζ2-2),ζ3*(3*ζ3-1)*(3*ζ3-2), 
      9*ζ1*ζ2*(3*ζ1-1),9*ζ1*ζ2*(3*ζ2-1),9*ζ2*ζ3*(3*ζ2-1),
      9*ζ2*ζ3*(3*ζ3-1),9*ζ3*ζ1*(3*ζ3-1),9*ζ3*ζ1*(3*ζ1-1),54*ζ1*ζ2*ζ3}/2; 
  Jx21=x2-x1+(9/2)*(dx4*(ζ1*(3*ζ1-6*ζ2-1)+ζ2)+
    dx5*(ζ2*(1-3*ζ2+6*ζ1)-ζ1)+dx6*ζ3*(6*ζ2-1)+dx7*ζ3*(3*ζ3-1)+
    dx8*ζ3*(1-3*ζ3)+dx9*ζ3*(1-6*ζ1)+6*dx0*ζ3*(ζ1-ζ2)); 
  Jx32=x3-x2+(9/2)*(dx4*ζ1*(1-3*ζ1)+dx5*ζ1*(1-6*ζ2)+
    dx6*(ζ2*(3*ζ2-6*ζ3-1)+ζ3)+dx7*(ζ3*(1-3*ζ3+6*ζ2)-ζ2)+    
    dx8*ζ1*(6*ζ3-1)+dx9*ζ1*(3*ζ1-1)+6*dx0*ζ1*(ζ2-ζ3)) ;
  Jx13=x1-x3+(9/2)*(dx4*(6*ζ1-1)*ζ2+dx5*ζ2*(3*ζ2-1)+
    dx6*ζ2*(1-3*ζ2)+dx7*ζ2*(1-6*ζ3)+dx8*(ζ3*(3*ζ3-6*ζ1-1)+ζ1)+
    dx9*(ζ1*(1-3*ζ1+6*ζ3)-ζ3)+6*dx0*ζ2*(ζ3-ζ1));
  Jy12=y1-y2-(9/2)*(dy4*(ζ1*(3*ζ1-6*ζ2-1)+ζ2)+
    dy5*(ζ2*(1-3*ζ2+6*ζ1)-ζ1)+dy6*ζ3*(6*ζ2-1)+dy7*ζ3*(3*ζ3-1)+
    dy8*ζ3*(1-3*ζ3)+dy9*ζ3*(1-6*ζ1)+6*dy0*ζ3*(ζ1-ζ2)); 
  Jy23=y2-y3-(9/2)*(dy4*ζ1*(1-3*ζ1)+dy5*ζ1*(1-6*ζ2)+
    dy6*(ζ2*(3*ζ2-6*ζ3-1)+ζ3)+dy7*(ζ3*(1-3*ζ3+6*ζ2)-ζ2)+    
    dy8*ζ1*(6*ζ3-1)+dy9*ζ1*(3*ζ1-1)+6*dy0*ζ1*(ζ2-ζ3)) ;
  Jy31=y3-y1-(9/2)*(dy4*(6*ζ1-1)*ζ2+dy5*ζ2*(3*ζ2-1)+
    dy6*ζ2*(1-3*ζ2)+dy7*ζ2*(1-6*ζ3)+dy8*(ζ3*(3*ζ3-6*ζ1-1)+ζ1)+
    dy9*(ζ1*(1-3*ζ1+6*ζ3)-ζ3)+6*dy0*ζ2*(ζ3-ζ1));
  Jdet = Jx21*Jy31-Jy12*Jx13;
  dNx={Jy23*(2/9-2*ζ1+3*ζ1^2),Jy31*(2/9-2*ζ2+3*ζ2^2),Jy12*(2/9-2*ζ3+3*ζ3^2),
       Jy31*ζ1*(3*ζ1-1)+Jy23*ζ2*(6*ζ1-1),Jy23*ζ2*(3*ζ2-1)+Jy31*ζ1*(6*ζ2-1), 
       Jy12*ζ2*(3*ζ2-1)+Jy31*ζ3*(6*ζ2-1),Jy31*ζ3*(3*ζ3-1)+Jy12*ζ2*(6*ζ3-1), 
       Jy23*ζ3*(3*ζ3-1)+Jy12*ζ1*(6*ζ3-1),Jy12*ζ1*(3*ζ1-1)+Jy23*ζ3*(6*ζ1-1), 
       6*(Jy12*ζ1*ζ2+Jy31*ζ1*ζ3+Jy23*ζ2*ζ3)}/(2*Jdet/9);
  dNy={Jx32*(2/9-2*ζ1+3*ζ1^2),Jx13*(2/9-2*ζ2+3*ζ2^2),Jx21*(2/9-2*ζ3+3*ζ3^2), 
       Jx13*ζ1*(3*ζ1-1)+Jx32*ζ2*(6*ζ1-1),Jx32*ζ2*(3*ζ2-1)+Jx13*ζ1*(6*ζ2-1), 
       Jx21*ζ2*(3*ζ2-1)+Jx13*ζ3*(6*ζ2-1),Jx13*ζ3*(3*ζ3-1)+Jx21*ζ2*(6*ζ3-1), 
       Jx32*ζ3*(3*ζ3-1)+Jx21*ζ1*(6*ζ3-1),Jx21*ζ1*(3*ζ1-1)+Jx32*ζ3*(6*ζ1-1), 
       6*(Jx21*ζ1*ζ2+Jx13*ζ1*ζ3+Jx32*ζ2*ζ3)}/(2*Jdet/9);
  Return[Simplify[{Nf,dNx,dNy,Jdet}]]
];

Figure 24.11. Shape function module for 10-node cubic triangle.

The Jacobian determinant is J = 1
2 (Jx21 Jy31−Jy12 Jx13). The shape function moduleTrig10IsoPShapeFunDer

that implements these expressions is listed in Figure 24.11. This has the same arguments and function returns
as Trig6IsoPShapeFunDer. As there the return Jdet denotes 2J .
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§24.5 *THE TEN-NODE (CUBIC) TRIANGLE

Trig10IsoPMembraneStiffness[ncoor_,Emat_,th_,options_]:= 
 Module[{i,k,l,p=6,numer=False,h=th,tcoor,w,c,
  Nf,dNx,dNy,Jdet,Be,Ke=Table[0,{20},{20}]}, 
  If [Length[options]>=1, numer=options[[1]]];
  If [Length[options]>=2, p=    options[[2]]];
  If [!MemberQ[{1,3,-3,6,7},p], Print["Illegal p"]; Return[Null]];
  For [k=1, k<=Abs[p], k++,  
      {tcoor,w}= TrigGaussRuleInfo[{p,numer},k];
      {Nf,dNx,dNy,Jdet}= Trig10IsoPShapeFunDer[ncoor,tcoor];
      If [numer, {Nf,dNx,dNy,Jdet}=N[{Nf,dNx,dNy,Jdet}]];
      If [Length[th]==10, h=th.Nf]; c=w*Jdet*h/2;
      Be= {Flatten[Table[{dNx[[i]],0       },{i,10}]],
           Flatten[Table[{0,       dNy[[i]]},{i,10}]],
           Flatten[Table[{dNy[[i]],dNx[[i]]},{i,10}]]};
      Ke+=c*Transpose[Be].(Emat.Be); 
      ]; If[!numer,Ke=Simplify[Ke]]; Return[Ke]
 ];

Figure 24.12. Stiffness module for 10-node (cubic) plane stress triangle.

§24.5.2. *Cubic Triangle Stiffness Module

Module Trig10IsoPMembraneStiffness, listed in Figure 24.12, implements the computation of the element
stiffness matrix of the 10-node cubic plane stress triangle. The module is invoked as

Ke = Trig10IsoPMembraneStiffness[ncoor,Emat,th,options] (24.46)

This has the same arguments of the quadratic triangle module as shown in (24.33), with the follow-
ing changes. The node coordinate list ncoor contains 10 entries: { { x1,y1 },{ x2,y2 },{ x3,y3 },
. . .,{ x9,y9 },{ x0,y0 } }. If the plate thickness varies, th is a list of 10 entries: { h1,h2,h3,h4,. . .,h9,h0 }.
The triangle Gauss rule specified in options as { numer,rule } should be 6 or 7 to produce a rank sufficient
stiffness. If omitted rule = 6 is assumed.

The module returns Ke as an 20 × 20 symmetric matrix pertaining to the following arrangement of nodal
displacements:

ue = [ ux1 uy1 ux2 uy2 ux3 uy3 ux4 uy4 . . . ux9 uy9 ux0 uy0 ]T . (24.47)

Remark 24.4. For symbolic work with this element the 7-point rule should be preferred because the exact
expressions of the abcissas and weigths at sample points are simpler than for the 6-point rule, as can be observed
in Figure 24.3. This speeds up algebraic simplification. For numerical work the 6-point rule is slightly faster.

§24.5.3. *Test Cubic Triangle

The stiffness module is tested on the constant metric triangle geometry shown in Figure 24.10(b), which has
been already used for the six-node triangle in §24.4.3. The corner nodes are placed at (0, 0), (6, 2) and (4, 4).
The six side nodes are located at the thirdpoints of the sides and the interior node at the centroid. The plate
has unit thickness. The material is isotropic with E = 1920 and ν = 0.

The script of Figure 24.13 computes Ke using the 7-point Gauss rule and exact arithmetic.

The returned stiffness matrix using either 6- or 7-point integration is the same, since for a superparametric
element the integrand is quartic in the triangular coordinates. For the given combination of inputs the entries
are exact integers:
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Chapter 24: IMPLEMENTATION OF ISO-P TRIANGULAR ELEMENTS

Ke =




306 102 −42 −42 −21 21 −315 −333 171 153
102 306 42 42 −63 −105 351 369 −135 −117
−42 42 1224 −408 −210 42 252 −180 −234 306
−42 42 −408 1224 126 −294 108 −36 −378 450
−21 −63 −210 126 1122 −306 −99 27 −99 27

21 −105 42 −294 −306 1938 27 −171 27 −171
−315 351 252 108 −99 27 5265 −1215 −1539 −243
−333 369 −180 −36 27 −171 −1215 6885 729 −891

171 −135 −234 −378 −99 27 −1539 729 5265 −1215
153 −117 306 450 27 −171 −243 −891 −1215 6885
−27 −9 −1602 990 819 −171 81 81 −405 −405
−9 −27 306 −2286 −459 1179 81 405 −405 −2025

−27 −9 828 −468 −1611 315 81 81 81 81
−9 −27 −180 1116 999 −2223 81 405 81 405
99 225 −108 36 −72 144 810 −324 810 −324

−63 387 36 −108 −540 −684 −324 1134 −324 1134
−144 −504 −108 36 171 −99 −4050 1620 810 −324

180 −828 36 −108 189 531 1620 −5670 −324 1134
0 0 0 0 0 0 −486 −486 −4860 1944
0 0 0 0 0 0 −486 −2430 1944 −6804

−27 −9 −27 −9 99 −63 −144 180 0 0
−9 −27 −9 −27 225 387 −504 −828 0 0

−1602 306 828 −180 −108 36 −108 36 0 0
990 −2286 −468 1116 36 −108 36 −108 0 0
819 −459 −1611 999 −72 −540 171 189 0 0

−171 1179 315 −2223 144 −684 −99 531 0 0
81 81 81 81 810 −324 −4050 1620 −486 −486
81 405 81 405 −324 1134 1620 −5670 −486 −2430

−405 −405 81 81 810 −324 810 −324 −4860 1944
−405 −2025 81 405 −324 1134 −324 1134 1944 −6804
5265 −1215 −3483 729 162 0 162 0 −972 0

−1215 6885 1701 −4779 0 −162 0 −162 0 972
−3483 1701 5265 −1215 −810 0 162 0 −486 −486

729 −4779 −1215 6885 0 810 0 −162 −486 −2430
162 0 −810 0 5265 −1215 −1296 −486 −4860 1944

0 −162 0 810 −1215 6885 486 −2592 1944 −6804
162 0 162 0 −1296 486 5265 −1215 −972 0

0 −162 0 −162 −486 −2592 −1215 6885 0 972
−972 0 −486 −486 −4860 1944 −972 0 12636 −2916

0 972 −486 −2430 1944 −6804 0 972 −2916 16524




(24.48)

The eigenvalues are

[ 26397. 16597. 14937. 12285. 8900.7 7626.2 5417.8 4088.8 3466.8 3046.4

1751.3 1721.4 797.70 551.82 313.22 254.00 28.019 0 0 0 ]
(24.49)

The 3 zero eigenvalues pertain to the three independent rigid-body modes in two dimensions. The 17 other
eigenvalues are positive. Consequently the computed Ke has the correct rank of 17.
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ClearAll[Em,ν,a,b,e,h]; Em=1920; ν=0; h=1; 
ncoor={{0,0},{6,2},{4,4}};
x4=(2*x1+x2)/3; x5=(x1+2*x2)/3; y4=(2*y1+y2)/3; y5=(y1+2*y2)/3;
x6=(2*x2+x3)/3; x7=(x2+2*x3)/3; y6=(2*y2+y3)/3; y7=(y2+2*y3)/3;
x8=(2*x3+x1)/3; x9=(x3+2*x1)/3; y8=(2*y3+y1)/3; y9=(y3+2*y1)/3;
x0=(x1+x2+x3)/3; y0=(y1+y2+y3)/3;
ncoor= {{x1,y1},{x2,y2},{x3,y3},{x4,y4},{x5,y5},{x6,y6},{x7,y7},
        {x8,y8},{x9,y9},{x0,y0}};
Emat=Em/(1-ν^2)*{{1,ν,0},{ν,1,0},{0,0,(1-ν)/2}};
Ke=Trig10IsoPMembraneStiffness[ncoor,Emat,h,{False,7}];  
Ke=Simplify[Ke];  Print[Ke//MatrixForm]; ev=Chop[Eigenvalues[N[Ke]]];
Print["eigs of Ke=",ev];

Figure 24.13. Script for testing the ten-node cubic triangle of Figure 24.10(b).

Notes and Bibliography

The 3-node, 6-node and 10-node plane stress triangular elements are generated by complete polynomials in
two-dimensions. In order of historical appearance:

1. The three-node, plane stress linear triangle, also known as Constant Strain Triangle (CST) and Turner
triangle, was developed as a “triangular skin panel” for delta wings by Turner, Clough and Martin
[146,148] using interelement flux assumptions. It was developed during 1952-53 and published in 1956
[786]. It is not clear when the assumed-displacement derivation, which yields the same stiffness matrix,
was done first. The displacement derivation is mentioned in passing by Clough in [138] and worked out
in the theses of Melosh [501] and Wilson [830].

2. The six-node quadratic triangle, also known as Linear Strain Triangle (LST) and Veubeke triangle, was
developed by B. M. Fraeijs de Veubeke in 1962–63 as noted in [863], and published 1965 [284].

3. The ten-node cubic triangle, also known as Quadratic Strain Triangle (QST), was developed by the
writer in 1965; published 1966 [211]. Shape functions for the cubic triangle were presented there but
used for plate bending instead of plane stress.

A version of the cubic triangle with freedoms migrated to corners and recombined to produce a “drilling
rotation” at corners, was used in static and dynamic shell analysis in Carr’s thesis under Ray Clough [127,143].
The drilling-freedom idea was independently exploited for rectangular and quadrilateral elements, respectively,
in the theses of Abu-Ghazaleh [3] and Willam [828], both under Alex Scordelis. A variant of the Willam
quadrilateral, developed by Bo Almroth at Lockheed, has survived in the nonlinear shell analysis code STAGS
as element 410 [633].

Numerical integration came into FEM by the mid 1960s. Five triangle integration rules were tabulated in
the writer’s thesis [211, pp. 38–39]. These were gathered from three sources: two papers by Hammer and
Stroud [343,345] and the 1964 Handbook of Mathematical Functions [2,§25.4]. They were adapted to FEM
by converting Cartesian abscissas to triangle coordinates. The table has been reproduced in Zienkiewicz’ book
since the second edition [860, Table 8.2] and, with corrections and additions, in the monograph of Strang and
Fix [725, p. 184].

The monograph by Stroud [734] contains a comprehensive collection of quadrature formulas for multiple
integrals. That book gathers most of the formulas known by 1970, as well as references until that year.
(Only a small fraction of Stroud’s tabulated rules, however, are suitable for FEM work.) The collection
has been periodically kept up to date by Cools [152]–[154], who also maintains a dedicated web site:
http://www.cs.kuleuven.ac.be/~nines/research/ecf/ecf.html This site provides rule informa-
tion in 16- and 32-digit accuracy for many geometries and dimensionalities as well as a linked “index card”
of references to source publications.
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Homework Exercises for Chapter 24

Implementation of Iso-P Triangular Elements

EXERCISE 24.1 [C:20] Write an element stiffness module and a shape
function module for the 4-node “transition” iso-P triangular element
with only one side node: 4, which is located between 1 and 2. See Figure
E24.1. The shape functions are N1 = ζ1 − 2ζ1ζ2, N2 = ζ2 − 2ζ1ζ2,
N3 = ζ3 and N4 = 4ζ1ζ2. Use the three interior point integration
rule=3.

Test the element for the geometry of the triangle depicted in Fig-
ure 24.7(a), removing nodes 5 and 6, and with E = 2880, ν = 1/3
and h = 1. Report results for the stiffness matrix Ke and its 8 eigen-
values. Note: Notebook Trig6Stiffness.nb for the 6-node triangle,
posted on the index of Chapter 24, may be used as “template” in support
of this Exercise. Partial results: K11 = 1980, K18 = 1440.

1

4
2

3

Figure E24.1. The 4-node transi-
tion triangle for Exercise 24.1.

EXERCISE 24.2 [A/C:5+20] As in the foregoing Exercise, but now write the module for a five-node triangular
“transition” element that lacks midnode 6 opposite corner 2. Begin by deriving the five shape functions.

EXERCISE 24.3 [A+C:25] Consider the superparametric straight-sided 6-node triangle where side nodes are
located at the midpoints. By setting x4 = 1

2 (x1 + x2), x5 = 1
2 (x2 + x3), x3 = 1

2 (x3 + x1), y4 = 1
2 (y1 + y2),

y5 = 1
2 (y2 + y3), y3 = 1

2 (y3 + y1) in (24.26), deduce that

J =
[

1 1 1
3x1 2x1 + x2 2x1 + x3

3y1 2y1 + y2 2y1 + y3

]
ζ1 +

[
1 1 1

x1 + 2x2 3x2 2x2 + x3

y1 + 2y2 3y2 2y2 + y3

]
ζ2 +

[
1 1 1

x1 + 2x3 x2 + 2x3 3x3

y1 + 2y3 y2 + 2y3 3y3

]
ζ3.

(E24.1)

This contradicts publications that, by mistakingly assuming that the results for the linear triangle (Chapter 15)
can be extended by analogy, take

J =
[

1 1 1
x1 x2 x3

y1 y2 y3

]
(E24.2)

Show, however, that

2J = 2A = det J = x3 y12 + x1 y23 + x2 y31, P = 1

2J

[
y23 y32

y31 x13

y12 x21

]
(E24.3)

are the same for both (E24.1) and (E24.2). Thus the mistake has no effect on the computation of derivatives.

EXERCISE 24.4 [A/C:15+15] Consider the superparametric straight-sided 6-node triangle where side nodes
are at the midpoints of the sides and the thickness h is constant. Using the 3-midpoint quadrature rule show
that the element stiffness can be expressed in a closed form obtained in 1966 [211]:

Ke = 1
3 Ah

(
BT

1 EB1 + BT
2 EB2 + BT

3 EB3

)
(E24.4)

24–22



§24. Notes and Bibliography

in which A is the triangle area and

B1 = 1

2A

[
y32 0 y31 0 y12 0 2y23 0 2y32 0 2y23 0
0 x23 0 x13 0 x21 0 2x32 0 2x23 0 2x32

x23 y32 x13 y31 x21 y12 2x32 2y23 2x23 2y32 2x32 2y23

]

B2 = 1

2A

[
y23 0 y13 0 y12 0 2y31 0 2y31 0 2y13 0
0 x32 0 x31 0 x21 0 2x13 0 2x13 0 2x31

x32 y23 x31 y13 x21 y12 2x13 2y31 2x13 2y31 2x31 2y13

]

B3 = 1

2A

[
y23 0 y31 0 y21 0 2y21 0 2y12 0 2y12 0
0 x32 0 x13 0 x12 0 2x12 0 2x21 0 2x21

x32 y23 x13 y31 x12 y21 2x12 2y21 2x21 2y12 2x21 2y12

]
(E24.5)

With this form Ke can be computed in approximately 1000 floating-point operations.

Using next the 3-interior-point quadrature rule, show that the element stiffness can be expressed again as
(E24.4) but with

B1 = 1

6A

[
5y23 0 y13 0 y21 0 2y21 + 6y31 0 2y32 0 6y12 + 2y13 0

0 5x32 0 x31 0 x12 0 2x12 + 6x13 0 2x23 0 6x21 + 2x31

5x32 5y23 x31 y13 x12 y21 2x12 + 6x13 2y21 + 6y31 2x23 2y32 6x21 + 2x31 6y12 + 2y13

]

B2 = 1

6A

[
y32 0 5y31 0 y21 0 2y21 + 6y23 0 6y12 + 2y32 0 2y13 0
0 x23 0 5x13 0 x12 0 2x12 + 6x32 0 6x21 + 2x23 0 2x31

x23 y32 5x13 5y31 x12 y21 2x12 + 6x32 2y21 + 6y23 6x21 + 2x23 6y12 + 2y32 2x31 2y13

]

B3 = 1

6A

[
y32 0 y13 0 5y12 0 2y21 0 6y31 + 2y32 0 2y13 + 6y23 0
0 x23 0 x31 0 5x21 0 2x12 0 6x13 + 2x23 0 2x31 + 6x32

x23 y32 x31 y13 5x21 5y12 2x12 2y21 6x13 + 2x23 6y31 + 2y32 2x31 + 6x32 2y13 + 6y23

]
(E24.6)

The fact that two very different expressions yield the same Ke explains why sometimes authors rediscover the
same element derived with different methods.

Yet another set that produces the correct stiffness is

B1 = 1

6A

[
y23 0 y31 0 y21 0 2y21 0 2y12 0 2y12 0
0 x32 0 x13 0 x12 0 2x12 0 2x21 0 2x21

x32 y23 x13 y31 x12 y21 2x12 2y21 2x21 2y12 2x21 2y12

]

B2 = 1

6A

[
y32 0 y31 0 y12 0 2y23 0 2y32 0 2y23 0
0 x23 0 x13 0 x21 0 2x32 0 2x23 0 2x32

x23 y32 x13 y31 x21 y12 2x32 2y23 2x23 2y32 2x32 2y23

]

B3 = 1

6A

[
y23 0 y13 0 y12 0 2y31 0 2y31 0 2y13 0
0 x32 0 x31 0 x21 0 2x13 0 2x13 0 2x31

x32 y23 x31 y13 x21 y12 2x13 2y31 2x13 2y31 2x31 2y13

]
(E24.7)

EXERCISE 24.5 [A/C:40] (Research paper level) Characterize the most general form of the Bi (i = 1, 2, 3)
matrices that produce the same stiffness matrix Ke in (E24.4). (Entails solving an algebraic Riccati equation.)

EXERCISE 24.6 [A/C:25]. Derive the 4-node transition triangle by forming the 6-node stiffness and applying
MFCs to eliminate 5 and 6. Prove that this technique only works if sides 1–3 and 2–3 are straight with nodes
5 and 6 initially at the midpoint of those sides.
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