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Appropriate Gaussian quadrature formulae for triangles
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ABSTRACT

This paper mainly presents higher order Gaussian quadrature formulae for numerical integration over the triangular surfaces.
In order to show the exactness and efficiency of such derived quadrature formulae, it also shows first the effective use of
available Gaussian quadrature for square domain integrals to evaluate the triangular domain integrals. Finally, it presents

n×n points and
n(n+1)

2
− 1 points (for n > 1) Gaussian quadrature formulae for triangle utilizing n-point one-dimensional

Gaussian quadrature. By use of simple but straightforward algorithms, Gaussian points and corresponding weights are

calculated and presented for clarity and reference. The proposed
n(n+1)

2
−1 points formulae completely avoids the crowding

of Gaussian points and overcomes all the drawbacks in view of accuracy and efficiency for the numerical evaluation of the
triangular domain integrals of any arbitrary functions encountered in the realm of science and engineering.
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1. Introduction

The integration theory extends from real line to the plane and three-dimensional spaces by the intro-
duction of multiple integrals. Integration procedures on finite domains underlie physically acceptable
averaging process in engineering. In probabilistic estimations and in spatially discretized approxima-
tions, e.g., finite and boundary-element methods, evaluation of integrals over arbitrary-shaped domain
Ω are the pivotal task. In practice, most of the integrals (encountered frequently) either cannot be
evaluated analytically or the evaluations are very lengthy and tedious. Thus, for simplicity numerical
integration methods are preferred and the methods extensively employ the Gaussian quadrature tech-
nique that was originally designed for one dimensional cases and the procedure naturally extends to two
and three-dimensional rectangular domains according to the notion of the Cartesian product. Gaussian
quadratures are considered as the best method of integrating polynomials because they guarantee that
they are exact for polynomials less than a specified degree.

In order to obtain the result with the desired accuracy, Gaussian integration points and weights nec-
essarily increase and there is no computational difficulty except time in evaluating any domain integral
when the two and three-dimensional regions are bounded respectively, by systems of parallel lines and
parallel planes.

Analysts cannot ignore at all the randomness in material properties and uncertainty in geometry that
are frequently encountered in complex engineering systems. Specifically, the vital components are rated
during quality control inspections according to reliability indices calculated from the average probability
density functions that model failure. This entails the evaluation of an integral of the function (say joint
probability frequency function) over the volume Ω of the component. In general, the Ω-shape-class is
very irregular in two and three-dimensional geometry. For non-parallelogram quadrilateral, very frequent
in finite-element modelling, there is no consistent procedure to select the sampling point to implement a
Gaussian quadrature on the entire element.
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Special integration schemes, e.g., reduced integration over quadrilaterals have been successfully devel-
oped in [1] and are widely used in commercial programs. There is no methodical way to design such
approximate integration schemes for polygons with more than four sides. An attempt to distribute the
sampling points according to the governing perspective transformation fails to assure the error order
germane to the quadrature formula. The reason can be traced to the crowding of quadrature points and
this numerical computational difficulty persists in all non-parallelogram polygonal finite elements [2]. A
considerable amount of research has been performed to attain perfect results of domain integration for
plane quadrilateral elements where numerical quadrature techniques are employed [3]. The accuracy of
a selected quadrature strategy is indicated by compliance with the patch test proposed in [4].

The overall error in a finite element calculation can be reduced by not relying so heavily on artificial
tessellation, which requires the deployment of elements with large number of sides. An elegant sys-
tematic procedure to yield shape functions for convex polygons of arbitrary number of sides developed
in [5] by which the energy density can be obtained in closed algebraic form in terms of rational poly-
nomials. However, a direct Gaussian quadrature scheme to numerically evaluate the domain integral on
n-sided polygons cannot be constructed to yield the exact results, even on convex quadrilaterals. In two-
dimension, n-sided polygons can be suitably discretized with linear triangles rather than quadrilaterals
(Fig. 1(a-b)) and hence triangular elements are widely used in finite element analysis. Another advantage
is to be mentioned that there is no difficulty with triangular elements as the exact shape functions are
available and the quadrature formulas are also exact for the polynomial integrands [6].

Integration schemes based on weighted residuals are prone to instability since the accuracy goal cannot
be controlled. In deterministic cases the underlying averaging process may be inconsistent, which was
stated as a variational crime [7]. In stochastic differential equation literature [8, 9], such averaging
processes are termed dishonest [10]. Thus, the high accuracy integration method is demanded and it is
meaningful when the shape functions are the very best. Therefore, there has been considerable interest
in the area of numerical integration schemes over triangles [11] to [24]. It is explicitly shown in [21, 24]
that the most accurate rules are not sufficient to evaluate the triangular domain integrals and for some
element geometry these rules are not reliable also.

To address all these short comings, to make a proper balance between accuracy and efficiency and to

avoid the crowding of quadrature points we have proposed n×n points and n(n+1)
2 −1 points higher order

Gaussian quadrature formulae to evaluate the triangular domain integrals. It is thoroughly investigated

that the n(n+1)
2 − 1 point formulae are appropriate in view of accuracy and efficiency and hence we

believe that the formulae will find better place in numerical solution procedure of continuum mechanics
problems.

2. Problem Statement

In finite and boundary element methods for two-dimensional problems, a pivotal task is to evaluate the
integral of a function f :

I1 =

∫∫
Ω

f dΩ; Ω: element domain (2.1)

Observe that I1 can be calculated as a sum of integrals evaluated over simplex divisions ∆i :

Ω =
⋃
i

∆i; ∆i : completely covers Ω (2.2)

∆i= triangle for two-dimensional domain (see Fig. 1(a-b)). Now equation (2.1) can be written as

I1 =

∫∫
Ω

f dΩ =
∑
i

∫∫
∆i

f d∆i (2.3)
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To evaluate the integral I1 in equation (2.3), it is now required to evaluate the triangular domain
integral

I2 =

∫∫
∆

f(x, y) dx dy; ∆ : triangle (arbitrary) (2.4)

Integration over triangular domains is usually carried out in normalized co-ordinates. To perform the
integration, first map one vertex (vertex 1) to the origin, the second vertex (vertex 2) to point (1, 0)
and the third vertex (vertex 3) to point (0, 1), (see Fig 2(a), (b)). This transformation is most easily
accomplished by use of shape functions as:

(
x
y

)
=

(
x1 x2 x3

y1 y2 y3

)N1

N2

N3

 (2.5)

where

N1(s, t) = 1− s− t, N2(s, t) = s, N3(s, t) = t (2.6)

The original and the transformed triangles are shown in Fig. 2. Form Eq. (5) using Eq. (6), we obtain

x(s, t) = x1 + (x2 − x1)s+ (x3 − x1)t

y(s, t) = y1 + (y2 − y1)s+ (y3 − y1)t (2.7)

and hence

∂(x, y)

∂(s, t)
= (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1) = Area (2.8)

Finally, equation (2.4) reduces to

I2 = Area

∫ 1

s = 0

∫ 1−s

t = 0

f(x(s, t), y(s, t)) dt ds (2.9)

One can simply verify that

I2 = Area

∫ 1

t = 0

∫ 1−t

s = 0

f(x(s, t), y(s, t)) ds dt (2.10)

Here, we wish to mention that the evaluation of integrals I2 in equation (2.9) and in equation (2.10)
by the existing Gaussian quadrature (i.e. 7-point and 13-point) will yield the same results. Thus, any
one of these two can be evaluated numerically. Influences of these integrals will be investigated later to
present new quadrature formulae for triangles.

3. Numerical evaluation procedures

In this section, we wish to describe three procedures to evaluate the integral I2 numerically and new
Gaussian quadrature formulae for triangles.

3.1 Procedure-1

Use of Gaussian quadrature for triangle (GQT): Gaussian quadrature for triangle in [11] to [24] can be
employed as

I2 = Area

NGP∑
i=1

NGP∑
j=1

WiWjf(x(si, tj), y(si, tj)) (3.1)

where (si, tj) are the ij-th sampling points Wi, Wj are corresponding weights and NGP denotes the
number of gauss points in the formula. It is thoroughly investigated that in some cases available Gaussian
quadrature for triangle cannot evaluate the integral I2 exactly [11, 21, 24].
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3.2 Procedure-2

Use of Gaussian quadrature for square (IOST): Integration over the normalized (unit) triangle can be
calculated as a sum of integrals evaluated over three quadrilaterals (fig-3a,b).

I2 =

∫ 1

s=0

∫ 1−s

t=0

f(x(s, t), y(s, t))
∂(x, y)

∂(s, t)
dt ds

=

3∑
i=1

∫∫
ei

f(x(s, t), y(s, t))
∂(x, y)

∂(s, t)
dt ds

=
Area

96

∫ 1

−1

∫ 1

−1

[f(X1, Y1)(4− ξ + η) + f(X2, Y2)(4− ξ − η) + f(X3, Y3)(4 + ξ − η)] dξ dη

(3.2)

Equation (3.2) is obtained after transforming each quadrilaterals in to a square in (ξ, η) space where

X1 =
1

24
[a11 + a12ξ + a13η + a14ξ η] Y1 =

1

24
[b11 + b12ξ + b13η + b14ξη]

X2 =
1

24
[a21 + a22ξ + a23η + a24ξη], Y2 =

1

24
[b21 + b22ξ + b23η + b24ξη]

X3 =
1

24
[a31 + a32ξ + a33η + a34ξη], Y3 =

1

24
[b31 + b32ξ + b33η + b34ξη] (3.3)

and

a11 = 5x1 + 5x2 + 14x3 b11 = 5y1 + 5y2 + 14y3

a12 = −x1 + 5x2 − 4x3 b12 = −y1 + 5y2 − 4y3

a13 = −5x1 + x2 + 4x3 b13 = −5y1 + y2 + 4y3

a14 = x1 + x2 − 2x3 b14 = y1 + y2 − 2y3

a21 = 14x1 + 5x2 + 5x3 b21 = 14y1 + 5y2 + 5y3

a22 = −4x1 + 5x2 − x3 b22 = −4y1 + 5y2 − y3

a23 = −4x1 − x2 + 5x3 b23 = −4y1 − y2 + 5y3

a24 = 2x1 − x2 − x3 b24 = 2y1 − y2 − y3

a31 = 5x1 + 14x2 + 5x3 b31 = 5y1 + 14y2 + 5y3

a32 = −5x1 + 4x2 + x3 b32 = −5y1 + 4y2 + y3

a33 = −x1 − 4x2 + 5x3 b33 = −y1 − 4y2 + 5y3

a34 = x1 − 2x2 + x3 b34 = y1 − 2y2 + y3

Now right hand side of equation (3.2) with equations (3.3) can be evaluated by use of available higher
order Gaussian quadrature for square. For clarity, we mention that each quadrilaterals in Fig. 3(b)
is transformed into 2-square in (ξ, η) ∈ {(−1,−1), (1,−1), (1, 1), (−1, 1)} space through isoperimetric
transformation to get the integral I2 in equation (3.2).

3.3 Procedure-3:

In this section, we wish to present two new techniques to evaluate the integrals over the triangular surface
and to calculate Gaussian points and corresponding weights for triangle.

Using mathematical transformation equations:

s =
1 + ξ

2
, t =

(
1− 1 + ξ

2

)(
1 + η

2

)
=

1

4
(1− ξ)(1 + η) (3.4)
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the integral I2 of equation (2.9) is transformed into an integral over the surface of the standard square
{(ξ, η)| − 1 ≤ ξ, η ≤ 1} and the equation (2.7) reduces to

x = x1 +
1

2
(x2 − x1)(1 + ξ) +

1

4
(x3 − x1)(1− ξ)(1 + η)

y = y1 +
1

2
(y2 − y1)(1 + ξ) +

1

4
(y3 − y1)(1− ξ)(1 + η) (3.5)

Now the determinant of the Jacobean and the differential area are:

∂(s, t)

∂(ξ, η
=
∂s

∂ζ

∂t

∂η
− ∂s

∂η

∂t

∂ζ
=

1

8
(1− ζ) (3.6)

ds dt = dt ds =
∂(s, t)

∂(ξ, η
dξ dη =

1

8
(1− ξ) dξ dη (3.7)

Now using equation (3.4) and equation (3.7) into equation (2.9), we get

I2 = Area

∫ 1

−1

∫ 1

−1

f

(
x

(
1 + ξ

2
,

(1− ξ)(1 + η)

4

)
, y

(
1 + ξ

2
,

(1− ξ)(1 + η)

4

))
1− ξ

8
dξdη

= Area

∫ 1

−1

∫ 1

−1

f

(
1 + ξ

2
,

(1− ξ)(1 + η)

4

)
1− ξ

8
dξdη (3.8)

In order to evaluate the integral I2 in equation (3.8) efficient Gaussian quadrature co-efficient (points
and weights) are readily available so that any desired accuracy can be readily obtained [21, 24].

3.3.1 New quadrature formula

GQUTS:
In this section we are straightly computing Gaussian quadrature formula for unit triangles (GQUTS).

The Gauss points are calculated simply for i = 1, m and j = 1, n. Thus the m × n points Gaussian
quadrature formula for (3.8) gives

I2 = Area

m∑
i=1

n∑
j=1

(
1− ξi

8

)
WiWjf

(
1 + ξi

2
,

(1− ξi)(1 + ηj)

4

)

= Area

m×n∑
r=1

Grf(ur, vr) (3.9)

where (ur, vr) are the new Gaussian points, Gr is the corresponding weights for triangles. Again, if we
consider the integral I2 of equation (2.10) and substitute

t =
1 + η

2
, s =

(
1− 1 + η

2

)(
1 + ξ

2

)
Then one can obtain (on the same line of equation (3.9)))

I2 = Area

∫ 1

−1

∫ 1

−1

f

(
(1 + ξ)(1− η)

4
,

1 + η

2

)
1− η

8
dξ dη

= Area

m×n∑
r=1

G′rf(u′r, v
′
r) (3.10)

where G′r and (u′r, v
′
r) are respectively weights and Gaussian points for triangle.
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All the Gaussian points and corresponding weights can be calculated simply using the following algo-
rithm:

step 1. r → 1

step 2. i = 1,m

step 3. j = 1, n

Gr =
(1− ζi)

8
WiWj , ur =

1 + ζi
2

, vr =
(1− ζi)(1 + ηj)

4

G/r =
(1− ηj)

8
WiWj , u/r =

(1 + ζi)(1− ηj)
4

, v/r =
1 + ηj

2
step 4. compute step 3

step 5. compute step 2

For clarity and reference, computed Gauss points and weights (for n = 2, 3, 7) based on above algorithm
listed in table-1 and Fig. 4a shows the distribution of Gaussian points for n = 10. In figure-4a, it is seen
that there is a crowding of gauss points at least at one point within the triangle and that is one of the
major causes of error germen in the calculation. To avoid this crowding further modification is needed.
This modification is obtained in the next section.

Table 1: Computed weights G and corresponding Gauss points (u, v) for n× n point method (GQUTS).

n G u v

2

0.5283121635D-01 0.1666666667D+00 0.7886751346D+00
0.1971687836D+00 0.6220084679D+00 0.2113248654D+00
0.5283121635D-01 0.4465819874D-01 0.7886751346D+00
0.1971687836D+00 0.1666666667D+00 0.2113248654D+00

3

0.9876542474D-01 0.2500000000D+00 0.5000000000D+00
0.1391378575D-01 0.5635083269D-01 0.8872983346D+00
0.1095430035D+00 0.4436491673D+00 0.1127016654D+00
0.6172839460D-01 0.4436491673D+00 0.5000000000D+00
0.8696116674D-02 0.1000000000D+00 0.8872983346D+00
0.6846438175D-01 0.7872983346D+00 0.1127016654D+00
0.6172839460D-01 0.5635083269D-01 0.5000000000D+00
0.8696116674D-02 0.1270166538D-01 0.8872983346D+00
0.6846438175D-01 0.1000000000D+00 0.1127016654D+00

7

0.2183621219D-01 0.2500000000D+00 0.5000000000D+00
0.1185259869D-01 0.1485387122D+00 0.7029225757D+00
0.2804474024D-01 0.3514612878D+00 0.2970774243D+00
0.3777048400D-02 0.6461720360D-01 0.8707655928D+00
0.2544928909D-01 0.4353827964D+00 0.1292344072D+00
0.3442812316D-03 0.1272302191D-01 0.9745539562D+00
0.1318557174D-01 0.4872769781D+00 0.2544604383D-01
0.1994866947D-01 0.3514612878D+00 0.5000000000D+00
0.1082804890D-01 0.2088224283D+00 0.7029225757D+00
0.2562052651D-01 0.4941001474D+00 0.2970774243D+00
0.3450556783D-02 0.9084178238D-01 0.8707655928D+00
0.2324942860D-01 0.6120807933D+00 0.1292344072D+00
0.3145212381D-03 0.1788659867D-01 0.9745539562D+00
0.1204579851D-01 0.6850359770D+00 0.2544604383D-01
0.1994866947D-01 0.1485387122D+00 0.5000000000D+00
0.1082804890D-01 0.8825499604D-01 0.7029225757D+00
0.2562052651D-01 0.2088224283D+00 0.2970774243D+00
0.3450556783D-02 0.3839262482D-01 0.8707655928D+00
0.2324942860D-01 0.2586847995D+00 0.1292344072D+00
0.3145212381D-03 0.7559445160D-02 0.9745539562D+00
0.1204579851D-01 0.2895179792D+00 0.2544604383D-01
0.1461316874D-01 0.4353827964D+00 0.5000000000D+00
0.7931962886D-02 0.2586847995D+00 0.7029225757D+00
0.1876802249D-01 0.6120807933D+00 0.2970774243D+00
0.2527665748D-02 0.1125328752D+00 0.8707655928D+00
0.1703110194D-01 0.7582327176D+00 0.1292344072D+00
0.2303989213D-03 0.2215753944D-01 0.9745539562D+00
0.8824011376D-02 0.8486080534D+00 0.2544604383D-01
0.1461316874D-01 0.6461720360D-01 0.5000000000D+00
0.7931962886D-02 0.3839262482D-01 0.7029225757D+00
0.1876802249D-01 0.9084178238D-01 0.2970774243D+00
0.2527665748D-02 0.1670153200D-01 0.8707655928D+00
0.1703110194D-01 0.1125328752D+00 0.1292344072D+00
0.2303989213D-03 0.3288504390D-02 0.9745539562D+00
0.8824011376D-02 0.1259459028D+00 0.2544604383D-01
0.6764926484D-02 0.4872769781D+00 0.5000000000D+00
0.3671971955D-02 0.2895179792D+00 0.7029225757D+00
0.8688347794D-02 0.6850359770D+00 0.2970774243D+00
0.1170141347D-02 0.1259459028D+00 0.8707655928D+00
0.7884268950D-02 0.8486080534D+00 0.1292344072D+00
0.1066593969D-03 0.2479854268D-01 0.9745539562D+00
0.4084931154D-02 0.9497554135D+00 0.2544604383D-01
0.6764926484D-02 0.1272302191D-01 0.5000000000D+00
0.3671971955D-02 0.7559445160D-02 0.7029225757D+00
0.8688347794D-02 0.1788659867D-01 0.2970774243D+00
0.1170141347D-02 0.3288504390D-02 0.8707655928D+00
0.7884268950D-02 0.2215753944D-01 0.1292344072D+00
0.1066593969D-03 0.6475011465D-03 0.9745539562D+00
0.4084931154D-02 0.2479854268D-01 0.2544604383D-01
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3.3.2 New quadrature formula

GQUTM:
It is clearly noticed in the equation (3.9) that for each i (i = 1, 2, 3, ....,m), j varies from 1 to n and

hence at the terminal value i = m there are n crowding points as shown in Table-1 and fig-4a. To
overcome this situation, we can use the advantage of equation (3.9) by making j dependent on i for the
calculation of new gauss points and corresponding weights. To do so, we wish to calculate gauss points

and weights for i = 1, m−1 and j = 1, m+1− i that is m(m+1)
2 −1 points Gaussian quadrature formulae

from equation (3.9) as:

I2 = Area

m−1∑
i=1

m+1−i∑
j=1

(
1− ξi

8
)WiWjf{

1 + ξi
2

,
(1− ξi)(1 + ηj)

4
}

= Area


m(m+1)

2 −1∑
r=1

Lrf(pr, qr)

 (3.11)

where (pr, qr) are the new Gaussian points, Lr is the corresponding weights for triangles. Similarly, we
can write equation (3.10) as:

I2 = Area

∫ 1

−1

∫ 1

−1

f

[
(1 + ξ)(1− η)

4
,

1 + η

2

]
1− η

8
dξ dη

= Area


m(m+1)

2 −1∑
r=1

L′rf(p′r, q
′
r)

 (3.12)

where L′r and (p′r, q
′
r) are respectively weights and Gaussian points for triangle. All the Gaussian points

and corresponding weights can be calculated simply using the following algorithm:

step 1. r → 1

step 2. i = 1,m− 1

step 3. j = 1,m+ 1− i

Lr =
(1− ζi)

8
WiWj , pr =

1 + ζi
2

, qr =
(1− ζi)(1 + ηj)

4
step 4. j = 1,m− 1

step 5. i = 1,m+ 1− j

L/r =
(1− ηi)

8
WiWj , p/r =

(1 + ζi)(1− ηj)
4

, q/r =
1 + ηj

2
r = r + 1

step 6. compute step 3, step 2

step 7. compute step 5, step 4

Thus, the new m(m+1)
2 −1 points Gaussian quadrature formulae is now obtained which is crowding free.

For clarity and reference, computed Gauss points and weights (for m = 5, 9) based on above algorithm
listed in Table-2 and Fig. 4b shows the distribution of Gaussian points for m = 10 i.e. 54-points formula.

4. Application Examples

To show the accuracy and efficiency of the derived formulae, following examples with known results are
considered:
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Table 2: Computed Gauss points (p, q) and corresponding weights L for
n(n+1)

2 − 1 point method GQUTM.

n p q L

n=5

6.943184420297371E-002 4.365302387072518E-002 1.917346464706755E-002
6.943184420297371E-002 0.214742881469342 3.873334126144628E-002
6.943184420297371E-002 0.465284077898513 4.603770904527855E-002
6.943184420297371E-002 0.715825274327684 3.873334126144628E-002
6.943184420297371E-002 0.886915131926301 1.917346464706755E-002

0.330009478207572 4.651867752656094E-002 3.799714764789616E-002
0.330009478207572 0.221103222500738 7.123562049953998E-002
0.330009478207572 0.448887299291690 7.123562049953998E-002
0.330009478207572 0.623471844265867 3.799714764789616E-002
0.669990521792428 3.719261778493340E-002 2.989084475992800E-002
0.669990521792428 0.165004739103786 4.782535161588505E-002
0.669990521792428 0.292816860422638 2.989084475992800E-002
0.930568155797026 1.467267513102734E-002 6.038050853208200E-003
0.930568155797026 5.475916907194637E-002 6.038050853208200E-003

n=9

1.985507175123191E-002 1.560378988162790E-002 2.015983497663207E-003
1.985507175123191E-002 8.035663927218221E-002 4.480916044841641E-003
1.985507175123191E-002 0.189476014677302 6.464359484621604E-003
1.985507175123191E-002 0.331164789916112 7.747662769908149E-003
1.985507175123191E-002 0.490072464124384 8.191474625434276E-003
1.985507175123191E-002 0.648980138332656 7.747662769908149E-003
1.985507175123191E-002 0.790668913571466 6.464359484621604E-003
1.985507175123191E-002 0.899788288976586 4.480916044841641E-003
1.985507175123191E-002 0.964541138367140 2.015983497663207E-003

0.101666761293187 1.783647091104033E-002 5.055663745070170E-003
0.101666761293187 9.133063094134081E-002 1.110639128725685E-002
0.101666761293187 0.213115003430640 1.566747257514398E-002
0.101666761293187 0.366773901111335 1.811354111938598E-002
0.101666761293187 0.531559337595478 1.811354111938598E-002
0.101666761293187 0.685218235276173 1.566747257514398E-002
0.101666761293187 0.807002607765473 1.110639128725685E-002
0.101666761293187 0.880496767795773 5.055663745070170E-003
0.237233795041836 1.940938228235618E-002 7.745946956361961E-003
0.237233795041836 9.857563833019303E-002 1.673231410555364E-002
0.237233795041836 0.226600619520678 2.284153446586376E-002
0.237233795041836 0.381383102479082 2.500282281756943E-002
0.237233795041836 0.536165585437487 2.284153446586376E-002
0.237233795041836 0.664190566627971 1.673231410555364E-002
0.237233795041836 0.743356822675808 7.745946956361961E-003
0.408282678752175 1.997947907913758E-002 9.191827856850984E-003
0.408282678752175 0.100234137152044 1.935542449754594E-002
0.408282678752175 0.225261107830170 2.510431683577024E-002
0.408282678752175 0.366456213417655 2.510431683577024E-002
0.408282678752175 0.491483184095780 1.935542449754594E-002
0.408282678752175 0.571737842168687 9.191827856850984E-003
0.591717321247825 1.915257191055202E-002 8.770885597453929E-003
0.591717321247825 9.421749319819557E-002 1.771853503082167E-002
0.591717321247825 0.204141339376088 2.105991205229386E-002
0.591717321247825 0.314065185553979 1.771853503082167E-002
0.591717321247825 0.389130106841623 8.770885597453929E-003
0.762766204958164 1.647157989702492E-002 6.471997505236908E-003
0.762766204958164 7.828940091495819E-002 1.213345702759751E-002
0.762766204958164 0.158944394126877 1.213345702759751E-002
0.762766204958164 0.220762215144811 6.471997505236908E-003
0.898333238706813 1.145801331145764E-002 3.140105492486528E-003
0.898333238706813 5.083338064659329E-002 5.024168787978471E-003
0.898333238706813 9.020874798172894E-002 3.140105492486528E-003
0.980144928248768 4.195870365439417E-003 5.024749628293684E-004
0.980144928248768 1.565920138579250E-002 5.024749628293684E-004

I1 =

∫ 1

y=0

∫ 1−y

x=0

(x+ y)
1
2 dx dy = 0.4

I2 =

∫ 1

y=0

∫ 1−y

x=0

(x+ y)−
1
2 dx dy = 0.6666667

I3 =

∫ 1

y=0

∫ y

x=0

(x2 + y2)−
1
2 dx dy = 0.881373587

I4 =

∫ 1

y=0

∫ y

x=0

exp|x+y−1|dx dy = 0.71828183

Computed values (by use of three procedures) are summarized in Table-3.
Some important remarks from the Table-3 are:

• Usual Gauss quadrature (GQT) for triangles e.g. 7-point and 13-point rules cannot evaluate
the integral of non-polynomial functions accurately.
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Figure 1: Triangulation of the domain of integral

Figure 2: The original and transformed triangle

• Splitting unit triangle into quadrilaterals (IOST) provides the way of using Gaussian quadra-
ture for square and the convergence rate is slow but satisfactory in view of accuracy.

• New Gaussian quadrature formulae for triangle (GQUTS and GQUTM) are exact in view
of accuracy and efficiency and (GQUTM) is faster.

Again, we consider the following integrals of rational functions due to [24] to test the influences of
formulae in equations (3.9), (3.10), (3.11) and (3.12) as described in procedure-3. Consider

Ip,q =

∫ 1

y=0

∫ 1−y

x=0

xpyq

α+ βx+ γy
dx dy

Example-1: Ir,0 =

∫ 1

y=0

∫ 1−y

x=0

xr

0.375− 0.375 x
dx dy

Example-2: I0,r =

∫ 1

y=0

∫ 1−y

x=0

yr

0.375− 0.375 y
dx dy

Example-3: I0,0 =

∫ 1

y=0

∫ 1−y

x=0

1

12 + 21.53679831x− 8.0821067231y
dx dy

Example-4: I0,0 =

∫ 1

y=0

∫ 1−y

x=0

1

12 + 9.941125498(x+ y)
dx dy

Results are summarized in Tables-(4, 5, 6, 7).
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Figure 3: Unit triangle splited into three quadrilaterals

Figure 4 Figure 5

Some important comments may be drawn from the tables (4 - 7). In tables (4 - 7) for method GQUTS,
Formula 1 is for equation (3.9) and Formula 2 is for equation (3.10), for method GQUTM, Formula 1
is for equation (3.11) and Formula 2 is for equation (3.12). These tables substantiated the influences of
numerical evaluation of the integrals as described in section-3.

• For the integrand xr

α+βx+γy with β 6= γ = 0 first formulae in equation (3.9) and (3.11)
described in procedure-3 is more accurate and rate of convergence is higher. But the new
formula in equation (3.11) requires very less computational effort.

• Similarly for the integrand yr

α+βx+γy with γ 6= β = 0 second formula in equation (3.10) and

(3.12) as described in procedure-3 is more accurate and convergence is higher. Here also the
new formula in equation (3.12) requires very less computational effort.

• Similar influences of these formulae in procedure-3 may be observed for different conditions
on β, γ.

• General Gaussian quadrature e.g. 7-point and 13-point rules cannot evaluate the integral
of rational functions accurately.

It is evident that the new formulae e.g. equation (3.11) and (3.12) are very fast and accurate in view
of accuracy and equally applicable for any geometry that is for different values of α, β and γ. We
recommend this is appropriate quadrature scheme for triangular domain integrals encountered in science
and engineering.

Also the method is tested on the integral of all monomials xiyj where i , j are non-negative integers
such that i + j ≤ 30 . In table 8, we present the absolute error over corresponding monomials integrals
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Table 3: Calculated values of the integrals I1, I2, I3, I4

Method Points Test example
I1 I2 I3 I4

GQT
7× 7 0.4001498818 0.6606860757 0.8315681219 0.6938790083

13× 13 0.4000451564 0.66370582580 0.85017383098 0.72387170791

IOST
7× 7 0.4000006725 0.6664256210 0.8755247309 0.7178753433

10× 10 0.4000001234 0.6665789279 0.8783900003 0.7180745324

GQUTS
7× 7 0.4000037499 0.6659893974 0.8696444431 0.7184323939

10× 10 0.4000006929 0.6664193645 0.8753981854 0.7182531970

GQUTM
54 0.4000009417 0.6663718426 0.8742865042 0.7175459725
90 0.4000002469 0.6665339400 0.8772635782 0.7180958214

Exact Value 0.4 0.6666667 0.881373587 0.71828183

Table 4: Computed results of Example -1 for r=2, r=4, r=6.

Method Points Computed value of Ir,0

r=2 r=4 r=6

G
Q

T 7 × 7 0.7288889289 0.3733333349 0.2209523767
13 × 13 0.7883351445 0.4327795803 0.2803986370

IO
S
T

5 × 5 0.8536515995 0.4980960513 0.3457150911
6 × 6 0.8636423911 0.5080868305 0.3557058624
7 × 7 0.8699174628 0.5143619067 0.3619809556
8 × 8 0.8741142348 0.5185586841 0.3661777177
9 × 9 0.8770583374 0.5215027742 0.3691218199

10 × 10 0.5236473748 0.3712664246 0.8792029273

formula 1 formula 2 formula 1 formula 2 formula 1 formula 2

G
Q

U
T
S

5 × 5 0.8888889003 0.8189709704 0.5333333421 0.4634153949 0.3809523939 0.3110344320
6 × 6 0.8888888979 0.8386859193 0.5333333394 0.4831303575 0.3809523751 0.3307493955
7 × 7 0.8888889008 0.8511113827 0.5333333320 0.4955558189 0.3809523895 0.3431748619
8 × 8 0.8888888889 0.8594405038 0.5333333473 0.5038849433 0.3809523887 0.3515039807
9 × 9 0.8888888960 0.8652927883 0.5333333366 0.5097372270 0.3809523945 0.3573562714

10 × 10 0.8888888916 0.8695606956 0.5333333260 0.5140051414 0.3809523860 0.3616241943

G
Q

U
T
M 14 0.8888888885 0.7979759424 0.5333333288 0.4424203913 0.3809523780 0.2900394411

44 0.8888888823 0.8620172476 0.5333333369 0.5064616972 0.3809523803 0.3540807426
77 0.8888888823 0.8738937178 0.5333333366 0.5183381645 0.3809523815 0.365957215
104 0.8888889011 0.8779014912 0.5333333301 0.5223459347 0.3809523797 0.369964974

Exact
Value 0.8888888 0.5333333 0.3809523

for each quadrature of order between 1 and 30. The results are compared with the results of [26] and it
is observed that the new method GQUTM is always accurate in view of both accuracy and efficiency and
hence a proper balance is observed.

5. Conclusions

In continuum mechanics and in spatially discretized approximations, e.g., finite- and boundary-element
methods, evaluation of integrals over arbitrary-shaped domain Ω is the important and pivotal task. Most
of the integrals defy our analytical skills and we are resort to numerical integration schemes. Among all
the numerical integration schemes Gaussian quadrature formulae are widely used for its simplicity and
easy incorporation in computer.

In general, the Ω-shape-class is very irregular in two and three dimensional geometry. If the domain
Ω is subdivided into quadrilaterals or into hexahedron respectively in two and three-dimensions, higher
order Gaussian quadrature formulae are readily available. Furthermore, reduced integrations techniques
compliance with the patch-test is also available [1, 4]. It is notable that there is no methodical way
to design such approximate integration schemes for polygons with more than four sides. Generally
simplexes e.g., triangle and tetrahedron are popular finite elements to discretize the arbitrary domain
Ω. Though these are the widely used elements in FEM and BEM, Gaussian quadrature formulae for the
triangular/tetrahedral domain integrals are not so developed comparing the square domain integrals. To
achieve the desired accuracy of the triangular domain integral it is necessary to increase the number of
points and corresponding weights. Therefore, it is an important task to make a proper balance between
accuracy and efficiency of the calculations.

For the necessity of the exact evaluation of the integrals, this article shows first the integral over the
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Table 5: Computed values of Example-2 for r=2, r=4, r=6.

Method Points Computed results of I0,r

r=2 r=4 r=6

G
Q

T 7 × 7 0.7288889289 0.3733333349 0.2209523767
13 × 13 0.7883350849 0.4327795803 0.2803986370

IO
S
T

5 × 5 0.8536515995 0.4980960513 0.3457150911
6 × 6 0.8636423911 0.5080868305 0.3557058624
7 × 7 0.8699174628 0.5143619067 0.3619809556
8 × 8 0.8741142348 0.5185586841 0.3661777177
9 × 9 0.8770583374 0.5215027742 0.3691218199

10 × 10 0.8792029273 0.5236473748 0.3712664246

formula 1 formula 2 formula 1 formula 2 formula 1 formula 2

G
Q

U
T
S

5 × 5 0.8189709704 0.8888889003 0.4634153949 0.5333333421 0.3110344320 0.3809523939
6 × 6 0.8386859193 0.8888888979 0.4831303575 0.5333333394 0.3307493955 0.3809523751
7 × 7 0.8511113827 0.8888889008 0.4955558189 0.5333333320 0.3431748619 0.3809523895
8 × 8 0.8594405038 0.8888888889 0.5038849433 0.5333333473 0.3515039807 0.3809523887
9 × 9 0.8652927883 0.8888888960 0.5097372270 0.5333333366 0.3573562714 0.3809523945

10 × 10 0.8695606956 0.8888888916 0.5140051414 0.5333333260 0.3616241943 0.3809523860

G
Q

U
T
M 14 0.7979759424 0.8888888885 0.4424203913 0.5333333288 0.2900394411 0.3809523780

44 0.8620172476 0.8888888823 0.5064616972 0.5333333369 0.3540807426 0.3809523803
77 0.8738937178 0.8888888823 0.5183381645 0.5333333366 0.365957215 0.3809523815
104 0.8779014912 0.8888889011 0.5223459347 0.5333333301 0.369964974 0.3809523797

Exact
Value 0.8888888 0.5333333 0.3809523

Table 6: Computed results of Example -3

Method Points Computed results of I0,0

G
Q

T 7× 7 0.7288889289
13× 13 0.7883350849

IO
S

T

5× 5 0.8536515995
6× 6 0.8636423911
7× 7 0.8699174628
8× 8 0.8741142348
9× 9 0.8770583374

10× 10 0.8792029273
formula 1 formula 2

G
Q

U
T

S

5× 5 0.8189709704 0.8888889003
6× 6 0.8386859193 0.8888888979
7× 7 0.8511113827 0.8888889008
8× 8 0.8594405038 0.8888888889
9× 9 0.8652927883 0.8888888960

10× 10 0.8695606956 0.8888888916

G
Q

U
T

M 14 0.7979759424 0.8888888885
44 0.8620172476 0.8888888823
77 0.8738937178 0.8888888823
90 0.8779014912 0.8888889011

Exact
Value 0.8888888
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Table 7: Computed results of Example -4

Method Points Computed results of I0,0

G
Q

T 7× 7 0.02731705643
13× 13 0.02731722965

IO
S

T
5× 5 0.02731723353
6× 6 0.02731723339
7× 7 0.02731723359
8× 8 0.02731723343
9× 9 0.02731723344

10× 10 0.02731723331
formula1 formula2

G
Q

U
T

S

5× 5 0.02731723329 0.02731723329
6× 6 0.02731723366 0.02731723366
7× 7 0.02731723323 0.02731723323
8× 8 0.02731723335 0.02731723335
9× 9 0.02731723349 0.02731723349

10× 10 0.02731723332 0.02731723332

G
Q

U
T

M 14 0.02731722858 0.02731722858
44 0.02731723355 0.02731723355
77 0.02731723346 0.02731723346
90 0.02731723357 0.02731723357

Exact
Value 0.02731723349

Table 8: The absolute error over corresponding monomials integrals

N i j TP Absolute Error
1 1 0 5 0.6531300112E-08
2 0 2 5 0.5046000631E-08
3 3 0 14 0.2096455530E-08
4 2 2 20 0.2975930894E-09
5 3 2 27 0.9426593534E-10
6 3 3 35 0.6938782665E-11
7 4 3 35 0.4528275162E-11
8 3 5 35 0.3010869684 E-11
9 3 6 44 0.6705744060E-11
10 3 7 44 0.3904583339E-11
11 4 7 44 0.6188189135E-12
12 8 4 77 0.9264116658E-12
15 7 8 65 0.4482329914E-13
26 11 15 135 0.1295867610E-17
27 13 14 135 0.7787442505E-18
28 2 26 152 0.3282154118E-18
29 0 29 152 0.3125194078E-18
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triangular domain can be computed as the sum of three integrals over the square domain. In this case
the readily available quadrature formulae for the square can be used for the desired accuracy. The results
obtained are found accurate in view of accuracy and efficiency. Secondly, it presented new techniques
to derive quadrature formulae utilizing the one dimensional Gaussian quadrature formulae and that
overcomes all the difficulties pertinent to the higher order formulae. The first technique (GQUTS) derives
m × m point quadrature formula utilizing the one dimensional m-point Gaussian quadrature formula.

Finally, in the second technique (GQUTM) m(m+1)
2 − 1 point quadrature formula is derived utilizing the

m-point one dimensional Gaussian quadrature formula. It is observed that this scheme is appropriate
for the triangular domain integrals as it requires less computational effort for desired accuracy. Through
practical application examples, it is demonstrated that the new appropriate Gaussian quadrature formula
for triangles are accurate in view of accuracy and efficiency and hence a proper balance is observed.

Thus, we believe that the newly derived appropriate quadrature formulae for triangles will ensure the
exact evaluation of the integrals in an efficient manner and enhance the further utilization of triangular
elements for numerical solution of field problems in science and engineering.
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