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A b s t r a c t  

A finite element method is proposed for one dimensional interface problems involving discontinuities in the 
coefficients of the differential equations and the derivatives of the solutions. The interfaces do not have to 
be one of grid points. The idea is to construct basis functions which satisfy the interface jump conditions. 
By constructing an interpolating function of the solution, we are able to give a rigorous error analysis which 
shows that the approximate solution obtained from the finite element method is second order accurate in the 
infinity norm. Numerical examples are also provided to support the method and the theoretical analysis. Several 
numerical approaches are also proposed for dealing with two dimensional problems involving interfaces. © 1998 
Elsevier Science B.V. and IMACS. All rights reserved. 
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1. I n t r o d u c t i o n  

Consider  the following model  problem: 

- ( / 3 ( x ) u t ) t + q ( x ) u ( x ) = f ( x ) ,  0 ~ < x ~ <  1, (1.1) 

u(0) = 0, u(1)  = 0. (1.2) 

We assume that 0 < /3(z) is p iecewise  continuous and may  have finite jumps  at interfaces c~l, o~2, 
. . . .  o~s. Across  the interfaces, somet imes  also called internal boundaries,  the natural j ump  conditions 
hold: 
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Fig. 1. A diagram shows why a finite element method cannot be second order accurate in the infinity norm if the interface 
is not a grid point. 

[u]~ dej lim u ( x ) -  lim u(x)= O, (1.3) 
x ~ ?  x ~ ;  

[~Ux]c~ de=f lim /3(x) u'(x) -- lim /3(x) u'(x) = 0. (1.4) 
X ----+ C~ ? X "-"~ O~ i 

The solution of (1. l) is typically non-smooth at the interfaces if/3(x) has a finite jump at each interface. 
The problem can be solved by both finite difference methods and finite element methods. The 

immersed interface method (IIM) [6,7,9-11] is an efficient finite difference approach for interface 
problems with discontinuities and singularities. The solution obtained from the IIM is typically second 
order accurate in the infinity norm regardless of the relative position between the grid points and 
the interfaces. However, for two or higher dimensional problems, the resulting linear system obtained 
from the IIM may not be symmetric positive definite. 

If the finite element method with the standard linear basis is used for (1. l) with presence of interfaces, 
second order accurate solutions can still be obtained if the interfaces lie on the grid points. This can 
be proved strictly in one dimensional space. For higher dimensional problems, the analysis is usually 
given in an integral norm which is weaker than the infinity norm, see [1,3,4,13], etc. If any of the 
interfaces is not a grid point, then the solution obtained from the finite element method is only first 
order accurate in the infinity norm, see Fig. 1. For two or higher dimensional problems, it is difficult 
and costly to construct a body-fitting grid so that the interface aligns with the triangulation, especially 
for moving interface problems. 

In this paper, we try to develop a numerical method which maintains the advantages of the simple 
grid structure of the finite difference method and the nice theoretical properties of the finite element 
method. The idea is to take a simple Cartesian grid, for example, a uniform grid, and modify the 
basis functions so that the interface jump relations are satisfied. With the simple grid, or triangulation, 
the finite element method corresponds to a finite difference method in which the resulting linear sys- 
tem of equations is symmetric positive definite. By choosing modified basis functions, second order 
accuracy is achieved in the infinity norm for one dimensional problems. Inhomogeneous jump con- 
ditions then can be taken care of easily by adding some correction terms according to the immersed 
interface method. We also propose some numerical methods for constructing basis functions for two 
dimensional problems involving interfaces. While second order convergence is preserved in the en- 
ergy norm for those methods, the convergence of those methods in the infinity norm is still under 
investigation. 
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2. M o d i f i c a t i o n  o f  the  l i n e a r  b a s i s  

Define the standard bilinear form 

1 

a(u,v) = / (/3(x)u'(x)v'(x) + q(x)u(x)v(x)) dx, u(x) ,v(x)  E H(~(0, 1), (2.5) 

0 

where H~(0, 1) is the Sobolev space. The solution of the differential equation u(x) ~ H~(0, 1) is also 
the solution of the following variational problem: 

1 

a(u,v) = ( f ,v)  = / f ( x ) v ( x ) d x ,  Vv E H~(O, 1). (2.6) 
. J  

0 

Without loss of generality, we assume that there is only one interface a in the interval (0, 1). Integration 
by parts over the separated intervals (0, a) and (a, 1) yields 

OL 

= / { - ( / 3 u ' ) '  + qu - f }v +/3-u  z v (2.7) 0 

0 
1 

+ / { - ( / 3 u ' ) ' + q u  f }v +~ + "+ - - / 3  ~ . v  . (2 .8)  

O~ 

The superscripts - and ÷ indicate the limiting value as x approaches a from the left and right, 
respectively, and ux = u'. Recall that v -  = v + for any v in Hd, it follows that the differential 
equation holds in each interval and that 

u + u 0 ,  + + = - - =  = / 3  U x - / 3 - u : ; = 0 ,  

where we have dropped the subscript a in the jumps since there is only one interface. These relations 
are the same as in (1.3), (1.4), which indicates that the discontinuity in the coefficient/3(x) does not 
cause any trouble for the theoretical analysis of the FEM and the weak solution will satisfy the jump 
conditions (1.3), (1.4). 

Now let us turn our attention to the numerics. For simplicity, we use a uniform grid xi = i h, 
i -- 0, 1~... ,N ,  with x0 = 0, XN = 1 and h = 1/N in our discussion. The standard linear basis 
function satisfies 

1, i f i  = k, (2.9) 
¢ i ( x k ) =  0, otherwise. 

The solution Uh(X) is a specific linear combination of the basis function from the finite dimensional 
space Vh : 

Vh = Vh: Vh = ~i¢i(x) , (2.10) 
i=1 

a(uh, Vh) = (f, Vh), forVvh E Vh. (2.11) 
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If an interface is not one of grid points xi, usually the solution Uh is only first order accurate in the 
infinite norm, see Fig. 1. The problem is that some basis functions which have non-zero support near 
the interface do not satisfy the natural jump condition (1.4) at the interface. 

The solution is to modify the basis functions in such a way that natural jump conditions are satisfied: 

1, i f i  = k, (2.12) 
¢ i ( x k ) =  O, otherwise, 

[¢i] = O, (2.13) 

[fl¢'~] = O. (2.14) 

Obviously, if x j  < a < x j + j ,  then only Cj and Cj+l need to be changed to satisfy the second jump 
condition. Using an undetermined coefficient method, we can conclude that 

O, 0 ~< x < xi_l ,  
x - x j - i  

h ' x j _ l  ~ x < X j ,  

C j ( x )  = x j  - D + 1, x j  <~ x < a, (2.15) 

o ( x j + l  - x)  
a ~ X < Xj+I ,  

D 
O, Xj+l ~< X ~< 1, 

where 

n=40, ~-=1, ~+=5, a=2/3 n=40, 13-:5, 13+=1, (x=2/3 
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Fig. 2. Plot of some basis function near the interface with different/3- and/3+. 
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and 

Z -  Z+ _ / 3 -  
P = ~-T, D = h /3+ (xj+l  - ~), (2.16) 

O, O ~ X < X j ,  
X -- Xj  

D ' x j ~ x < o : ,  

(~j+l(X) = p ( x  - X j + l )  -~- 1 c~ <<. x < xj+l, 
D 

x j +  2 -- x 
h ' X j+l  ~ X ~ Xj+2, 

O, Xj+ 2 <<. X <<. 1. 

(2.17) 

Fig. 2 shows several plots of the modified basis functions Cj (X) ,  0j+l (X), and some neighboring 
basis functions, that are the standard hat functions. At the interface, we can see clearly the kink in the 
basis function which reflect the natural jump conditions. 

3. The theoretical analysis 

In this section, we prove that the solution obtained from the finite element method with the modified 
basis function is second order accurate in the infinite norm. 

For the sake of clean and concise proof, we derive the theoretical analysis for the simple model: 

- /3(x)u" = f (x ) ,  f ( x )  E C[0, 1], 0 <~ x ~< 1, (3.18) 

u(0) = O, u(1) = 0, (3.19) 

with 

/3(x) = { /3 - ,  ifO ~< x < c~, 
/3 +, i f c ~ < x ~ < l ,  

where /3- and/3+ are two constants. The solution u(x) E H i satisfies the natural jump conditions 
at c~. If the value of the solution at c~ is known, say uc~, then the problem is equivalent to the following 
two separated problems: 

- / 3 - u " = f ( x ) ,  0 ~ < x < o ~ ,  and u ( 1 ) = 0 .  
~(0)  = 0, ~ (~)  = ~ ,  ~ (~)  = ~ ,  

Therefore from the regularity theory we know that u(x) E C2[0, 1] in each sub-domain and uz-~ = 
limx~ a-  u"(x) and u+x = l i m x ~ +  u"(x) are finite. We define 

IL~"llo~ =-max I~xxl, I x~l, sup lUxxl, sup I~xxl , (3.20) 
0<x<a c~<x<l 

which is bounded. 

3.1. The interpolant of  the solution 

As in the standard FEM analysis, an interpolating function of the solution plays an important role in 
the error analysis. In this subsection, we will define the piecewise linear function in the space ~ which 
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also interpolates u(x) at the node points. Assuming that xj <~ o~ < xj+l, we define an interpolant of  
u(x) as follows: 

X i + l  - -  X X - -  X i 
h u(xi)  + - - - h - u ( x i + l ) ,  i # j,  x~ <~ x <~ X~+l, 

ui(x)  = u(xj)  + t~(x - u(xj)) ,  xj  ~< x < o~, (3.21) 

u(Xj+l) + ~ p ( x  - xj+~), o~ <~ x <~ xj+,, 
where 

9 -  ~ ( x j + l )  - ~(~) 
p -  f l+,  t~ = . (3.22) 

o~ - x j  - p ( o ~  - Xj+l) 

It is easy to verify that 

Ul(X i )=u(x i ) ,  i = 0 , 1 , . . . , N - 1 ,  (3.23) 

[ui] = O, [/3u}] = O, (3.24) 

and hence ux(x) E Vh. Before giving an error bound for ]]ui(x) - u(x)]],¢, we need the following 
lemma which gives the error estimates for the first derivatives of  ui(x)  approximating u'(x). 

L e m m a  3.1. Given ui(  x) as defined in (3.21), the following inequalities hold: 

OZ - -  X j  - -  p(O!  - -  X j + I )  ~ min{½h, ½hP}, 

I,~ - ~ ; I  ~< c Ilu"ll~ h, 

I p ~ -  ux+l ~< C Ilu"ll~ h, 
w h e r e  

2 max{ 1, p} 
C -  

min{1, p} " 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

So C acts like a condition number for the interface problem. 

Proof .  It is obvious that 

{ 0~ - -  X j  - -  p ( ( y  - X j + l )  ~ p ( x j + l  - oL) ~ ½hP, if ~ - x j  < ½h, 
OL - -  X j  - -  p(OL - -  X y + I  ) ~ O! - -  X j  ~ ½h, if c~ - xj  > ½h, 

which concludes the first inequality. Using the Taylor expansion about c~, we have 

- x j  - p ( c ~  - x y + l )  

= ~ +  + ~ + ( x j + ~  - ~ )  + ½~xx(~1)(x~+~ - ~ )2  

o~ - x j  - p ( o ~  - xj+l) 

__ U -  d- U+x(X j  - -  Ol) -'~ l U x x ( ~ 2 ) ( X  j - -  O~) 2 __ Ztx , 

o~ - x a  - p ( c ~  - Xj+l) 

where ~1 E (o~,xj+l) and ~2 E (xj,o~). With the jump conditions u + = u -  and u + -- pu x,  the 
expression above is simplified to 
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I ~c- Uxl = 1½Uxx(~2)(xj+l _~)2] + [½Uxx(~2)(xj _~)2]  • 1 iiu,,il~h~ 
o~- x j -  p(c~- Xj+l) min {½, ½p} 

which implies the second inequality (3.26). At last, 

Ip~ - u + l  - -  p l ~  - ~ ; I  -< C t l ~ " l l o o h .  

This completes the proof of the lemma. [] 

We are now ready to prove the following theorem on the accuracy of the interpolating function 
ui(x). 

Theorem 3.2. If  u i (x)  is given as in (3.21), then 

II(x)- Ch211u"ll~, (3.29) 

where 
_ 2 max{l,  p} 3 3 

min{l~p} + 2 - - C + 2 '  

Proof. Again we assume that o~ E [xj, xj+l) for some integer 0 < j ~< N - 1. For any x E [xi, xi+l] 
which does not contain the interface c~, from the standard interpolation theory, we know that 

[u(x) - uz (x )  I <~ ½h211u"ll~ ~< ~h211u"ll~. 
I f x j  <~ x <~ ~, then 

±(x U(X)  : U ( X j )  q- U t ( X j ) ( X  -- X j )  q- 2 -- XJ) 2ut t (~l )  

!(x xj)2~"(~l), ~-- U ( X j )  q- 2Zx(X -- X j )  q- U t t ( ~ 2 ) ( X  - -  O~)(X - -  X j )  q- 2 -- 

where {1 c (xj, oL) and {2 c (x, o~) from the intermediate value theorem, and u~- = limx+ ~- u'(x). 
Thus using the bound in (3.26), and the fact that Ix - ~x I ~< h and Ix - xjl <~ h, we have 

I~(x)- u,(x) I = I(u; - ~) (x-  xj) I + l~"(~2)(x- ~ ) (~-  x j )+  ½(x- xj)2~"(~l) I 
~< Ch211u"ll~ + 3h211u"ll~ ~< ~h:ll~"ll~. 

The proof is similar if a < x ~< X j + I .  [ ]  

3.2. Convergence theorem for the finite element method 

We are now ready to prove that the approximate solution obtained from the FEM with the modified 
linear basis is second order accurate to the exact solution in the infinite norm. First, we need to prove 
the following lemma. 

Lemma 3.3. If  u(x) is the solution of (1.1), (1.2), and u1 (x) is the interpolating function defined in 
(3.21), then 

Xi+l 

J /3(X)(U(X) -- ~i(X))tVth(X)dx VVh Vh, and 0 i N 1. 0, E (3.30) 

x i  
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Proof. If c~ ~ [Xi ,Xi+l )  , then/3(x) and vlh(x) are two constants. So 

Xi+l Xi+l 

xi xi 
! g,t z z _ u~ /~(Xi+I/2)  V h ( X i + I / 2 ) ( U ( X  ) __ U I ( X ) )  xi+, xi 

w h e r e  Xi+l/2 = Xi Jr h/2 .  On the other hand if oL E [Xj ,X j+I ) ,  then 

Xj4-1 

f ~ ( X ) ( U ( X ) -  t t i ( x ) ) t V l h ( X ) d x  

xj  

oL Xj+l  

~--- /~-VS,(~'l)/ (U(X)- IZI(X))" d x  -{-/~-t-v~(~C2) / ('U(X)- 'gl(X))t d x  

xj  o~ 

= 9 - v g ( ¢ , ) ( ~ -  - * 6 )  - ; ~ % ~ ( ¢ 2 ) (  ~ +  - ~/+) = 0, 

where {1 and {2 are any two points in the interval (xj ,  c~) and (~, xj+ l  ), respectively. In the derivation 
above, we have used the natural jump condition (1.3), (1.4) for the basis function Vh and continuity 
conditions for u(x)  and uz(x)  at c~: 

- -  ! 

/~ Vh(~l )  = /~+/)h(¢2) ,  tt + = i t - ,  U t = U7 .  [] 

Below is the main theorem of convergence for the modified finite element method. 

Theorem 3.4. Let Uh(X) be the solution obtained from the finite element method with the modified 
basis function. Then 

I I U ( X ) -  Uh(X)  llo ° ~ Cllu"llooh 2, (3.31) 

where 

C -  2 m a x { l ,  p} 3 
+ 2 (3.32) 

min{ 1, p} 

Proof. For any vh C Vh, we have 

a(u - t t i ,  Vh) = a(u - tt h q- tt h - uI~ Vh) : a(u - Uh, Vh) Jr- a(uh -- ttI~ Vh) "= a(uh -- UI~ Vh).  

From the definition of  a(u, v) and Lemma 3.3, we know that 

1 N - 1  Xi+l 

0 i=0 xi 

Take Vh = Uh -- U1 E Vh, we conclude a(uh -- ui ,  Uh -- UX) = 0, which implies that Uh(X) = ur(x) .  
Thus 

t ,~(~) - '~h(X)[  < - 1 ' 4 " )  -- ~* ' (x) l  + 1~ I (x )  -- ~h(X) l  --< I ' * (x)  -- u~'(x)l  ~< CPI~" I I~  h2. [] 
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Remark  3.1. The conclusion can be easily extended to the more general case (1.1), (1.2) with variable 
/3(x). The key modification is the following: 

N - I  x i + l  
1 .  

a ( u -  ui, Vh)= ~ / (/3(x) - ~+~/2)(u U i ) t V t  h 

d 
i = O , i ¢ j , j + l  x i  

dx 

O~ Xi+l 

+ f (/3(x)- -~l)(u - uz)'Vlh dx + / (/3(x)- -~r)(U - UI)'Vlh dx, 
x j  a 

where ~i+1/2, ~l and ~r are the average values of/3(x) in the intervals [xi, xi+l], [xj, c~] and [c~, xj+l], 
respectively, which are first order approximations to/3(x) in that specific interval. Note that ui(x) is 
a second order approximation to u(x) in the infinite norm, which means that u)(x) is a first order 
approximation to u~(x) except at grid points and the interface c~. Thus we have 

a(uh -- ui,  Vh) <. Clhllu - u/Ill Ilvhlll ~< Clh211u "ll~llvhlll. 

Taking Vh = Uh -- UI E Vh, we conclude 

II~h - ~111 < clh211~"l[~.  

The final inequality then follows: 

lu(x)- Uh(X)l ~< lu(x)- u~(x)l + lui(x)-  uh(z)l 

< + ~ CIl~"ll~h 2, 

with a different error constant C. 

4. Numerical examples 

We have done quite a number of numerical tests. All the results agree with the theoretical analysis. 
The integrals 

x i + l  x i+ l  

/ ¢i(x) f(x)dx and / ¢:(x)¢1j(x)dx 
x i  x i  

are evaluated using the trapezoidal rule. We just present one example below. 
The differential equation is 

/3- if x < c~, 
(/3Ux)x= 12x 2, 0~<x~< 1, /3=  / 3+ i f x > ~ ,  

~(0)  = o, ~(1)  = 1 / 9  + + ( 1 / 9 -  - 1 / 9 + ) ~  4. 

The natural jump conditions (1.3), (1.4) are satisfied. The exact solution is 
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f X 4 / / 3  - if  x < c~, 
u(x) = I x4//3+ + (1//3- - 1//3+)c0 if x > c~, 

where the parameters/3- and/3+ are two constants. 
Since Simpson's rule has degree of precision "three" and f(x) is a quadratic, there are no errors 

in computing f ¢i(x)f(x)dx and f ¢~(x)¢}(x)dx. We expect the solution obtained using the FEM 
method to be the same as the interpolating function defined in (3.21), provide there is no round-off 
error involved. In other words, the computed solution agrees with the exact solution at grid points and 
is second order accurate at any other points. Numerical experiments have confirmed the theoretical 
analysis. The infinity norm of the computed solution at grid points is between 6 x 10 -15 to 3 x 10 -13  

in double precision. At any other points, the FEM solution is defined as 

N 

Uh(X) = ~ ui¢i(x), (4.33) 
i=0  

where ui is the computed solution at the grid point xi, the error decreases by a factor of 4 if we 
double the grid size. Table 1 shows the grid refinement analysis in the infinity norm for two different 

2 points which are not part of the grid. In the first case,/3- = 1,/3+ = 100, and the interface is o~ = 
which is not a grid point. We see that the computed solution at the interface itself has average second 
order accuracy. In the second case, we take the same/3-  and/3+, but the interface is c~ = 0.5 which 
is a grid point. Since there is no interface between the grid points, the solution at the interface c~ is 
again accurate to the machine precision up to a factor of the condition number of the discrete linear 
system. The right part of the table shows the grid refinement analysis at c~ + ~ which is not a grid 
point. We see that the error is reduced by a factor of 4. Notice that, for interface problems, the error 
constant which is O(1) may not approach to a constant. It will depend on the relative position of the 
interface and the grid. This is the case in the left part of the table. By the second order accuracy, we 
actually mean the average convergence rate of the solution, the reader is referred to [10,12] for more 
information on the error analysis. For the second case, since the interface is a grid point, the error 
constant will indeed approach to a fixed number. 

Fig. 3(a) is the plot of the solution with 40 grid points. There is no difference between the computed 
and the exact solution at the grid points. The differences in other places are too small to be visible. 

Table 1 

Grid refinement analysis for the example with /3- = 1, /3+ = 100. The left part of  the table: the error of  the solution 
1 2 The right part of  the table: the rror  of  the solution evaluated at x = 0.5 + 5' c~ = 0.5 evaluated at the interface x = c~ = 7" 

7~, Cn en/e2n Cn/C4n '1% Cn en/C2n 

20 4.4312 × 10 -5 

40 5.4822 × 10 -6 8.0829 

80 2.7347 × 10 -6 2.0047 

160 3.4478 × 10 7 7.9318 

320 1.7038 × 10 -7 2.0235 

640 2.1582 × l0 -8 7.8948 

16.2038 

15.9010 

16.0503 

15.9752 

20 2.2844 × 10 -5 

40 5.8259 × 10 -6 3.9211 

80 1.4420 × 10 -6 4.0403 

160 3.6229 × 10 -7 3.9801 

320 9.0347 x 10 -8 4.0100 

640 2.2615 × 10 -8 3.9950 
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n=40, [~ =1 [~+=100 ff~2/3 

0 0 Computed ] 
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I I I I I I t I I 
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× 1 0 4  Error Plot n:40, ~" :1, {~*:100 11--2/3 

(a) (b) 

Fig. 3. Comparison of the computed solution and exact solution when ~z = 40. (a) The solution plot. (b) The error plot. 

Fig. 3(b) is the error plot of  the error in the entire interval. We see the errors are zero at grid points 
and O(h 2) at other points. 

5. Constructing basis functions in two dimensions 

The model equation in two dimensions on a rectangular region with a closed interface is 

V .  (/3Vu) = f ( x , y ) ,  ( x , y )  c f2, (5.34) 

given BC on 0S?, (5.35) 

see the diagram in Fig. 4. The natural jump conditions across the interface F are 

[u] = 0, [/3u~] = 0, (5.36) 

where u~ is the normal derivative. 
As discussed in previous sections, we will use a uniform triangulation, see Fig. 5. If  a cell contains 

no interface, we can use the standard linear basis function over that cell. It is more difficult to construct 
basic function in two dimensions when interface cuts through the uniform triangulation. It is true that 
we can easily find piecewise linear, or quadratic, or cubic function which interpolates the solution 
of  (5.34), (5.35) to second or higher order accuracy using the Taylor expansion. The difficulty in 
constructing the basis function is the requirements of continuity in the entire region and the jump 
conditions across the interface. There are several approaches currently under investigation. Bube and 
Kaupe [2] are tying to use a quadrilateral triangulation. Hou and Wu [5] are experimenting with both 
conforming and non-conforming basis functions. Below we propose an approach which is in the same 
spirit as our discussion for one dimensional problem. We will stick with conforming basis functions, 
that is, the basis functions belong to H01 (£2). 
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Fig. 4. A diagram for a model problem in two dimensions. 
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Fig. 5. A typical cell with the interface cutting through. 

5.1. A coupled approach 

Now take a typical case as shown in Fig. 5. An arbitrary closed interface can be approximated by 
piecewise line segments. We want to find a basis function ¢(x, y), for example, centered at (xi, yj) 
which satisfies 

¢ (x ,y)  E C(O),  ¢(xi, yj) = l, (5.37) 

[¢] = o ,  = o .  ( 5 . 3 8 )  

It is quite obvious that a linear basis function will not work. Instead, we try to use a piecewise quadratic 
basis function. In Fig. 5, the interface does not cut through the triangles 4, 5 and 6. Therefore the 
basis function can be taken as the standard linear basis function over those triangles. 

The triangles l, 2 and 3 contain a portion of the interface which divides the region into six pieces, 
three triangles and three quadrilaterals. The piecewise quadratic function over the six pieces can be 
determined using the undetermined coefficient method. The total number of degrees of freedom is 36 
without any constrains. The continuity constrains involving both the sides of the triangles and the 
interface are 33. The remaining 3 degrees of freedom are then used to satisfy the flux jump condition 
[/3¢n] --- 0 to certain degree. For instance, we can force [/3¢n] to be zero at the mid-points of linear 
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segments A B ,  BC,  and CD. At other points of the interface, ItCh] will also be very small from the 
continuity condition of the solution and the assumption that the normal direction of the interface does 
not change too much in the cell. 

In the end, we need to set up a linear system of equation for the coefficients of the quadratic basis 
function. The number of unknowns can be greatly reduced if we take advantage of the boundary 
conditions. For example, the function ¢(x, y) on the quadrilateral A B O E  can be written as 

¢ (x ,y )  = ao + al (x  - xi-1) + a2(y -- yj) + a3(x--  x i -1)(y  - yj). 

It is not so easy to implement the approach discussed above because the basis functions on several 
cells are coupled together. This is the price which we need to pay for interface problems to obtain 
more accurate results. However we can simplify the process of constructing the basis function if we 
can pre-determine the values of the basis function at points B, and C as in the example of Fig. 5. An 
interpolation approach to determine those values will be discussed later in this section. 

5.2. A decoupled approach 

Suppose we can pre-determine the values of the basis function at those points B, and C in Fig. 5, 
then we can construct a bilinear function in each quadrilateral which interpolates the function values 
at the vertices and those intersections such as the points B, and C in Fig. 5. The bilinear functions 
¢(x, y) will be linear on the boundary of the region as shown in Fig. 5. For example, the bilinear 
function ¢(x, y) on the quadrilateral A B O E  is 

¢(X, y) -- X -hxi-1 q-~Y - yj ÷ 1 ÷ q (x - x i -1) (y  - yfi), 

where q is chosen such that ¢(xB, YB) = CB, the pre-determined value of the basis function at B. 
Once we have determined the bilinear function on each quadrilateral, then we know the values 

of the basis function at mid-points of all sides of each triangles. Thus a quadratic function is easily 
determined from the six values of the basis function on each triangle. 

In the approach we described above, we are almost able to find the basis function on each triangle 
separately, which makes it easier to assemble the stiffness matrix. 

5.3. Interpolation scheme for the pre-determined values 

The approach described above rely on the values at intersections of the interface and the interior 
sides of the triangles. Ideally, the basis function can be taken as the solution of the following Poisson 
equation with natural jump conditions: 

v .  ( 3 v ¢ )  = o, 

[¢] = o, [9¢ , ]  = o. 

The boundary condition is 

I X--Xi--1 

X -- X i 
¢ =  1 

0 

on EO, 

on E F ,  

on EG, G H  and H F .  

(5.39) 

(5.40) 

(5.41) 
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Once we know the solution of the PDE above, we can get those pre-determined values. However, it 
is too costly to solve the PDE above at all the cells which contain the interface. What we can do, 
however, is to use an interpolation scheme in terms of the boundary values, the jump conditions, and 
the partial differential equation itself, for example, 

The coefficients can be determined using the weighted least squares interpolation [ 10] and the procedure 
is briefly described below: 

• Select a point X on the interface. 
.....+ • 

• Use the local coordinates at X in the tangential and normal directions of the interface. 
_____+* 

• Use the Taylor expansion over X to expand the values from each side of the interface. 
• Eliminate the quantities of one side, such as the solution, the derivatives up to second order, in 

terms of another using the jump conditions and the differential equation. 
• Set up and solve the linear system of equation to get the coefficients of the interpolation. 

The details can be found in [8,10] with some modification. 
Theoretically, if the basis functions belong to H01 (~)  space and satisfy the natural jump conditions, 

then the standard error analysis using the energy norm would apply. So we would have the standard 
convergence result even if there is an interface in the solution domain. It is not easy to see or prove 
whether the methods described above are still second order accurate in the infinity norm. However, 
the approaches described above certainly has better accuracy compared to the straightforward finite 
element method with no modifications. The price is the extra cost at those cells where the interface 
cuts through. 

In summary, the modified finite element method using the simple or uniform triangulation is very 
accurate for one-dimensional problems and very promising for two-dimensional problems. The cor- 
responding finite difference method would allow us to deal with inhomogeneous jump conditions. 
However, the analysis for two or higher dimensional interface problems is far from complete. We 
hope the ideas presented in this paper will eventually lead to the development of some efficient finite 
element methods with simple triangulations for two and three dimensional problems. 
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