1. (a): State and prove the continuous and discrete maximum principle for 1 D elliptic problem.
(b): Use the result to show that the finite difference solution using the central finite difference scheme is second order accurate in the infinity norm.
2. Derive the fourth-order compact finite difference scheme for $u^{\prime \prime}(x)=f(x), a<x<b$ with $u(a)=u_{a}, u(b)=u_{b}$.
3. (a) Give a finite difference formula to approximate $\frac{\partial^{3} u}{\partial x^{2} \partial y}$ (or $u_{x x y}$) for a function $u(x, y)$ assuming that the step sizes are h_{x} and h_{y}.
(b) (True or False) If a numerical method is stable and consistent, then the method converges.
(c) (True or False) If a finite difference method is convergent, then the method has to be stable and consistent.
(d) (True or False) A finite difference scheme converges for a particular problem, it has to be consistent.
4. (Programming Part) Implement and compare the Gauss-Seidel, and the SOR (trying to find the best ω by testing), methods for the following elliptic problem:

$$
\begin{gathered}
u_{x x}+p(x, y) u_{y y}+r(x, y) u(x, y)=f(x, y) \\
a<x<b ; \quad c<y<d
\end{gathered}
$$

with the following boundary conditions:

$$
u(a, y)=0, \quad u(x, c)=0, \quad u(x, d)=0, \quad \frac{\partial u}{\partial x}(b, y)=-\pi \sin (\pi y)
$$

Test and debug your code for the case $0 \leq x, y \leq 1$, and

$$
p(x, y)=\left(1+x^{2}+y^{2}\right), \quad r(x, y)=-x y
$$

The the source term $f(x, y)$ is determined from the exact solution

$$
u(x, y)=\sin (\pi x) \sin (\pi y)
$$

Do the grid refinement analysis for $n=16, n=32$, and $n=64$ (if possible) in the infinity norm (Hint: In matlab, use $\max (\max (a b s(e)))$). Take the tolerance as 10^{-5}. Compare also the number of iterations and test the optimal relaxation factor ω. Plot the solution and the error for $n=32$.
Having made sure that you code is working correctly, try your code with a point source $f(x, y)=$ $\delta(x-0.5) \delta(y-0.5)$ and $u_{x}=-1$ at $x=1$, with $p(x, y)=1$ and $r(x, y)=0$. Note that the $u(x, y)$ can be interpreted as the steady state temperature distribution of a room with insulated wall on three sides, a constant heat flow in from one side, and a point source (a heater for example) in the room. Note that the heat source can be expressed as $f(n / 2, n / 2)=1 / h^{2}$, and $f(i, j)=0$ for other grid points. Use the mesh and contour plots to visualize the solution for $n=36(\operatorname{mesh}(x, y, u)$, contour $(x, y, u, 30))$. Note that the solution is called the discrete Green function.

