- 1. For the implicit Euler's method applied to the heat equation $u_t = u_{xx}$, is it possible to choose Δt such that the discretization has order $O((\Delta t)^2 + h^4)$? What's the advantage of the implicit Euler's method?
- 2. Consider the diffusion and and advection equation

$$u_t + \epsilon u_x = (\beta u_x)_x + f(x, t), \quad \beta(x) \ge \beta_0 > 0.$$
(1)

(a) Assuming $\epsilon = 1$, f(x,t) = 0, and β is a constant. Use the von Neumann analysis to derive the time step restriction for the following scheme

$$\frac{U_i^{k+1} - U_i^k}{\Delta t} + \frac{U_{i+1}^k - U_{i-1}^k}{2h} = \beta \frac{U_{i-1}^k - 2U_i^k + U_{i+1}^k}{h^2}$$

(b) Implement the *Crank-Nicolson* or the *MOL* methods with the central/upwind discretization in space to solve the equation with a Dirchlet boundary condition at x = a and a Neumann or Robin boundary condition at x = b.

Use $u(x,t) = (\cos t) x^2 \sin(\pi x)$ to find the f(x,t), a < x < b, tfinal = 5.0 to test and debug your code. Your discussion should include the grid refinement analysis, error and solution plots for m = 80.

Hint: You can use Matlab code *ode15s* or *ode23s* to solve the semi-discrete ODE system.

Assume that $\epsilon = 0$ and u is the temperature of a thin rod whose one end (x = b) has just been heated. The other end of the rod has a room temperature $(70^{\circ}F \text{ or } 21^{\circ}C)$. Solve the problem and find the history of the solution. Roughly how long the rod will reach the steady state solution? What is the exact solution of the steady state? **Hint:** Take the initial condition as $u(x,0) = T_0 e^{-(x-b)^2/\gamma}$, where $T_0 = 100^{\circ}C$ and $\gamma = 2$ are two constants, f(x,t) = 0, and the the Neumann boundary condition $u_x(b,t) = 0$.

3. Show that the Crank-Nicholson scheme is unconditionally stable for $u_t = \beta u_{xx}$ with Dirichlet boundary condition, where $\beta > 0$ is a constant.

Extra credit: Consider the stability of that the Crank-Nicholson scheme for $u_t = \beta u_{xx} + \alpha u_x$ when the u_x is discretized by the central scheme; and/or the up-winding scheme.

- 4. Write down the coefficient matrix of the finite difference method using the standard central five point stencil with the Red-Black for the Poisson equation defined on the rectangle $[a, b] \times [c, d]$. Take m = n = 3 and assume a Dirichlet boundary condition at x = a, y = c and y = d, and a Neumann boundary condition $\frac{\partial u}{\partial n} = g(y)$ at x = b. Use the ghost point method to deal with the Neumann boundary condition.
- 5. (a) Download the instructor's Matlab code to solve Poisson equations $u_{xx} + u_{yy} = f(x, y)$ on rectangular domains for $(a) : u(x, y) = e^x \sin y$, what is f(x, y)?; $(b) : u(x, y) = \sin(k_1 x) \sin(k_2 y)$, what is f(x, y)?. Try $k_1 = 5$, $k_2 = 3$ and $k_1 = 100$, $k_2 = 3$. Carry out the grid refinement analysis to find the convergence order. Explain and analysis your results as much as you can.
 - (b) Modify your code to solve $u_{xx} + u_{yy} + \sigma u = f(x, y)$ to solve the same problems above. Try $\sigma = -5$, $\sigma = 5$ and $\sigma = -500$, $\sigma = 500$. Explain and analysis your results as much as you can.