
MA 584
Homework #2
Due September 28, 2020

Note: The first two problems are paper-work problems. The last two problems are both

paper-work and coding problems.

1. Given u′′(x)− q(x)u(x) = f(x), a < x < b,

u(a) = ua, u′(b) = β,

where ua and β are constants.

(a) What conditions (sufficient) should we impose on f(x), q(x) so that the problem is

well-posed?

(b) If we use the ghost point method to discretize u′(b) = β, write down AhU = F . Show

that the local truncation error of the FD scheme is O(h) at xn = b. What is the global

error of the FD method?

(c) If we use the forward Euler to discretize u′(b) = β, write down AhU = F . Show that

the local truncation error of the FD scheme is O(1) at xn = b except when β = 0

(O(?)). What is the global error of the method when β = 0 and β 6= 0?

2. Derive a finite difference method for

u′′(x)− q(x)u(x) = f(x), a < x < b, (1)

periodic BC, that is, u(a) = u(b), u′(a) = u′(b), · · · , (2)

using the central difference scheme and a uniform grid. Write down the system of equations

AhU = F . How many unknowns are there without redundant? Is the coefficient matrix Ah
tri-diagonal? Hint: Note that U0 = Un. Set unknowns as U1, U2, · · ·, Un. If q(x) = 0,

does the solution exist? Derive a compatibility condition for which the solution exists. If

the solution exists, is it unique? How do we modify the finite difference method to make

the solution unique?

3. Derive and implement a finite difference method to solve the Sturm-Liouville eigenvalue

problem

(pu′)′ + qu = λu, a < x < b. (3)

u(a) = 0, u(b) = 0. (4)

That is, find a pair (u(x), λ) that satisfy the ODE and BCs and u(x) 6= 0. Particularly,

check your code for p(x) = 1, q(x) = 0, a = 0, b = π. The analytic solution is λn = −n2, n =

1, 2, · · ·, and corresponding u(x) = sinnx. List all eigenvalues and plot several normalized

eigenfunctions (‖uk‖ = 1, k = 1, 5, 20, 78 with the mesh size N = 80. Hint: in Matlab,

use [U,D] = eig(A) to find the eigenvalues and eigenvectors. You can use subplot(2,2,1),

subplot(2,2,2),subplot(2,2,3),subplot(2,2,4), to put four plots together.

4. Consider the finite difference scheme for the 1D steady state convection-diffusion equation

εu′′ − u′ = −1, 0 < x < 1 (5)

u(0) = 1, u(1) = 3. (6)



(a) Verify the exact solution is u(x) = 1 + x+

(
ex/ε − 1

e1/ε − 1

)
.

(b) Can we re-write the ODE as a self-adjoint form?

(c) Compare the following two finite difference methods for ε = 0.3, 0.1, 0.05, and 0.0005,

(1): Central difference scheme:

ε
Ui−1 − 2Ui + Ui+1

h2
− Ui+1 − Ui−1

2h
= −1. (7)

(2): Central-upwind difference scheme:

ε
Ui−1 − 2Ui + Ui+1

h2
− Ui − Ui−1

h
= −1. (8)

Do grid refinement analysis for each case to determine the order of accuracy. Plot the

computed solution and the exact solution for h = 0.1, h = 1/25, and h = 0.01. You

can use Matlab command subplot to put several graphs together.

(d) From you observation, give your opinion to see which method is better. ( Hint: The

answer may not be unique and depends on the solution and parameters.)

5. Extra credit: Consider

u′′(x) = f(x), a < x < b, u(a) = ua, u(b) = ub. (9)

Derive, implement, and validate a fourth order finite difference scheme to solve the problem.

Hint: The second order centered finite difference operator is

δ2xxu =
u(x− h)− 2u(x) + u(x+ h)

h2
. (10)

Show that

δ2xxu =
∂2u

∂x2
+
h2

12

∂4u

∂x4
+O(h4)

=

(
1 +

h2

12

∂2

∂x2

)
∂2

∂x2
u+O(h4) ,

(11)

and substituting the operator relation

∂2

∂x2
= δ2xx +O(h2)

into the equation, we obtain

δ2xxu =

(
1 +

h2

12

(
δ2xx +O(h2)

))
∂2

∂x2
u+O(h4)

=

(
1 +

h2

12
δ2xx

)
∂2

∂x2
u+O(h4) ,

from which we further have

∂2

∂x2
=

(
1 +

h2

12
δ2xx

)−1
δ2xxu+

(
1 +

h2

12
δ2xx

)−1
O(h4) .


