“c04” — 2017/7115 — 13:10 — page 78 — #1

4
FD Methods for Parabolic PDEs

A linear PDE of the form
u; = Lu, 4.1)

where ¢ usually denotes the time and L is a linear elliptic differential operator
in one or more spatial variables, is called parabolic. Furthermore, the second-
order canonical form

a(x,)uy + 2b(x,)uyx + c(x, t)ux, + lower-order terms = f(x, 1)

is parabolic if 5> — ac =0 in the entire x — ¢ domain. Note that, we can trans-
form this second-order PDE into a system of two PDEs by setting v = u,, where
the z-derivative is first order. Some important parabolic PDE are as follows.

e 1D heat equation with a source
Uy =uxyx + f(x,1).

The dimension refers to the space variable (x direction).
e General heat equation

u=V-(BVu) + f(x,1), 4.2)

where [is the diffusion coefficient and f(x, #) is the source (or sink) term.
¢ Diffusion-advection equation

u=V-(8Vu)+w-Vu+f(x,1),

where V - (6Vu) is the diffusion term and w - Vu the advection term.
e Canonical form of diffusion-reaction equation

u =V - (BVu) + f(x, t,u).

The nonlinear source term (X, #, «) is a reaction term.

78

“c04” — 2017/7115 — 13:10 — page 79 — #2

FD Methods for Parabolic PDEs 79

The steady-state solutions (when u, =0) are the solutions of the corre-
sponding elliptic PDEs, i.e.,

V- (BVu) +f(x,u) =0

for the last case, assuming tlim f(x,t,u) =f(x,u) exists.
—00

Initial and Boundary Conditions

In time-dependent problems, there is an initial condition that is usually spec-
ified at =0, ie., u(x,0) =up(x) for the above PDE, in addition to relevant
boundary conditions. If the initial condition is given at t=T##0, it can of
course be rendered at 1=0 by a translation # = — T. Thus for the 1D heat
equation u, = uy, on a < x < b for example, we expect to have an initial condi-
tion at =0 in addition to boundary conditions at x =a and x = b say. Note
that the boundary conditions at =0 may or may not be consistent with the
initial condition, e.g, if a Dirichlet boundary condition is prescribed at x =a
and x =5 such that u(a,) =g (¢) and u(b,t) =g»(¢), then uy(a) =g;(0) and
up(b) = g2(0) for consistency.

Dynamical Stability

The fundamental solution u(x.r)=e /% /\/4xt for the 1D heat equation
U; = Uyxy 1S uniformly bounded. However, for the backward heat equation u; =
—Uyy, if u(x,0) # 0 then lim,_, o, u(x,) = 0o. The solution is said to be dynam-
ically unstable if it is not uniformly bounded, i.e., if there is no constant C >0
such that |u(x, 7)| < C. Some applications are dynamically unstable and “blow
up,” but we do not discuss how to solve such dynamically unstable problems in
this book, i.e., we only consider the numerical solution of dynamically stable
problems.

Some Commonly Used FD Methods

We discuss the following finite difference methods for parabolic PDE in this
chapter:

the forward and backward Euler methods;

the Crank—Nicolson and ¢ methods;

the method of lines (MOL), provided a good ODE solver can be applied; and
the alternating directional implicit (ADI) method, for high-dimensional
problems.

“c04” — 2017/7115 — 13:10 — page 80 — #3

80 FD Methods for Parabolic PDEs
MOL
BC IBC
k+1 °® e o o
k e o o °
FW-CT BW-CT

t=0@ © e e o
1C

Fig. 4.1. Diagram of the finite difference stencil for the forward and back-
ward Euler methods, and the MOL.

Finite difference methods applicable to elliptic PDEs can be used to treat the
spatial discretization and boundary conditions, so let us focus on the time dis-
cretization and initial condition(s). To consider the stability of the consequent
numerical methods, we invoke a Fourier transformation and von Neumann
stability analysis.

4.1 The Euler Methods
For the following problem involving the heat equation with a source term,
= Puxx +f(x, 1), a<x<b, t>0,
u(a,)=gi(t), ub,)=g(r), u(x,0)=up(x),

let us seek a numerical solution for u(x, ¢) at a particular time 7" > 0 or at certain
times in the interval 0 <z < T.
As the first step, we expect to generate a grid

Ni—a-tih i=0.1,...m h=2"9
m
*=kAt, k=0,1,...,n, At:%.

It turns out that we cannot use arbitrary Az (even it may be small) for explicit
methods because of numerical instability concerns. The second step is to
approximate the derivatives with finite difference approximations. Since we
already know how to discretize the spatial derivatives, let us focus on possi-
ble finite difference formulas for the time derivative. In Figure 4.1, we sketch
the stencils of several finite difference methods.

“c04” — 2017/7/15 — 13:10 — page 81 — #4

4.1 The Euler Methods 81

4.1.1 Forward Euler Method (FW-CT)

At a grid point (x;, tX), k > 0, on using the forward finite difference approxima-
tion for u, and central finite difference approximation for u,, we have

u(x;, t5 + At) — u(x;, t%)
At

u(xi—lv tk) - 2M(Xl‘7 tk) + M(XH_I, tk)
h2

+ f (i, 1F) 4+ T(x, 15 .

=B

The local truncation error is

h* 3 At
T(x,', tk) = _7uxxxx(xi7 tk) + 7”11()‘71'7 tk) + -
12 2
where the dots denote higher-order terms, so the discretization is O(h* + Af).
The discretization is first order in time and second order in space, when the
finite difference equation is

Ut — Uk B UL, —2U0F+ US
Al _B h2 + i (43)

where fik =1 (x;, t%), with Uf.‘ again denoting the approximate values for the true
solution u(x;, t*). When k = 0, U? is the initial condition at the grid point (x;, 0);
and from the values U¥ at the time level k the solution of the finite difference
equation at the next time level k + 1 is

ke k k
U = Uk + At (ﬁU"—l 2;" U +fl-k>, i=1,2,....m—1. (4.4
The solution of the finite difference equations is thereby directly obtained from
the approximate solution at previous time steps and we do not need to solve
a system of algebraic equations, so the method is called explicit. Indeed, we
successively compute the solution at #' from the initial condition at #°, and then
at 1> using the approximate solution at #'. Such an approach is often called a
time marching method.

Remark 4.1. The local truncation error of the FW-CT finite difference scheme
under our definition is

T(x, 1) = u(x, I+AAI)Z— u(x, 1) iy u(x—h,t) —Zu;);,)+ u(x+h,t))

= O(h* + A1)

“c04” — 2017/7115 — 13:10 — page 82 — #5

82 FD Methods for Parabolic PDEs
In passing, we note an alternative definition of the truncation error in the
literature

T(x, 1) = u(x, 1+ A0) —u(x, t)—At(ﬂu(Xh’ 2 2”(}; Dfux+ht) oo z))

~0 (At(h2 + At)>
introduces an additional factor A¢, so it is one order higher in A¢.

Remark 4.2. If f(x,7) =0 and $ is a constant, then from u; = Suy, and u, =
BOuyy /Ot = B0%u;/Ox* = B2uyryx, the local truncation error is
BZAt Bh?

T(x, 1) = (- 12) Uxxx + O ((At)2 +h4). 4.5)

Thus if 3 is constant we can choose At=h?/(68) to get O(h* + (A1)?) =
O(h4), i.e., the local truncation error is fourth-order accurate without further
computational complexity, which is significant for an explicit method.

It is easy to implement the forward Euler’s method compared with other
methods. Below we list some scripts of the Matlab file called FW_FEuler_heat.m:

a=0; b=1; m = 10; n=20;
h = (b-a)/m;
k = h"2/2; %k = h"2/1.9;

t = 0; tau = k/h"2;
for i=1:m+1,
x(i) = a + (i-1)*h; vy1(i) = uexact(t,x(i)); vy2(i) = 0;
end
plot(x,yl); hold

for j=1:n,
y1(1)=0; yl(m+1)=0;
for i=2:m
y2(1i) = y1l(i) + tau*(yl(i-1)-2*yl(i)+yl(i+l)) + k*£(t,x(1));
end
plot (x,y2); pause(0.25)
t =t +k; yl=y2;
end

In the code above, we also plot the history of the solution. On testing the
forward Euler method with different Az and checking the error in a problem
with a known exact solution, we find the method works well when 0 < Az < %

but blows up when Az > % Since the method is consistent, we anticipate that

“c04” — 2017/7/15 — 13:10 — page 83 — #6

4.1 The Euler Methods 83
(a) (b)
1.4 -_— 0.4
1.2 1 03
0.2
1
| g
/ 0.1
0.8 / / |
/ 0
0.6 1
/ -0.1
/ 4
0.4 “0n
0.2 1 -03
o N4
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 I
X X

Fig. 4.2. (a) Plot of the computed solutions using two different time step
sizes and the exact solution at some time for the test problem. (b) Error plots
of the computed solution using the two different step sizes: one is stable and
the error is small; the other one is unstable and the error grows rapidly.

this is a question of numerical stability. Intuitively, to prevent the errors in uf.‘
being amplified, one can set
2

%gl, or 0<At§§5. (4.6)
This is a time step constraint, often called the CFL (Courant—Friedrichs—Lewy)
stability condition, which can be verified numerically. In Figure 4.2, we plot the
computed solution for a testing problem with 8=1, f(x) = —sin¢sin(7x) +
cos ¢sin(mx)w2. The true solution is u(x, t) = cos¢sin(rx). We take 20 time
marching steps using two different time steps, one is A¢; =h?/2 (stable), and
the other one is A#, =2h* (unstable). The left plots are the true solution at
t; =20At; and t, =20At,. The red lines are the history of the solution com-
puted using At, = 2A?, and the “*” indicates the computed solution at the grid
points for the final step. We see that the solution begin to grow and oscillates.
The plot of the blue line is the true solution at 1 = 20A¢; with the little “o0” as
the finite difference solution at the grid points, which is first-order accurate. The
right figure is the error plots with the blue one (the error is small) for the com-
puted solution using A¢; = h?/2; while the black one for the computed solution
using At, = 2h?, whose error grows rapidly and begin oscillates. If the final time
T gets larger, so is the error, which we call the phenomenon as a blow-up due
to the instability of the algorithm. The stability and the CFL condition of the
time step constraint are very important for explicit or semi-explicit numerical
algorithmes.

0<

“c04” — 2017/7115 — 13:10 — page 84 — #7

84 FD Methods for Parabolic PDEs

4.1.2 The Backward Euler Method (BW-CT)

If the backward finite difference formula is used for u; and the central finite
difference approximation for u,, at (x;, tk), we get

—2UF + Uk

Uk — yk! .
i 5 Hlyk k=1,2,...,

1 :/B Ulk—l
At

which is conventionally reexpressed as

U-k+1 . UJ(U_k—l-l o 2Uk+1 + Uk+1
i N i_pg_i=l hlz BLop el k=0,1,.... (@7)

The backward Euler method is also consistent, and the discretization error is
again O(At + 1?).

Using the backward Euler method, we cannot get with a few simple
algebraic operations because all of the U{‘“’s are coupled together. Thus we
need to solve the following tridiagonal system of equations, in order to get the
approximate solution at the time level £ + 1:

et 1
Ui

[1+2p —p 1 _U{‘“_
o 1+2u —p Ut
- 1+2p —p Ué‘“
—u 1 +2M —u Uk+l

I —p T+2u) LU

B U{‘+Atfk+l—|—,ug{€+l T
US + Ay

US + Arfft!
= - , (4.8)

2+Alfk+l
Uk 1+Alfk+1+ugk+l_

“c04” — 2017/7115 — 13:10 — page 85 — #8

4.2 The Method of Lines 85
where ;1 = % and fl.kJrl = f(x;, t**1). Note that we can use f'(x;, t¥) instead of
£ (x;, t5+1), since the method is first-order accurate in time. Such a numerical
method is called an implicit, because the solution at time level k + 1 are coupled
together. The advantage of the backward Euler method is that it is stable for
any choice of At. For 1D problems, the computational cost is only slightly more
than the explicit Euler method if we can use an efficient tridiagonal solver, such
as the Grout factorization method at cost O(5n) (¢f Burden and Faires, 2010,
for example).

4.2 The Method of Lines

With a good solver for ODE or systems of ODEs, we can use the MOL to
solve parabolic PDEs. In Matlab, we can use the ODE Suite to solve a system
of ODEs. The ODE Suite contains Matlab functions such as ode23, ode23s,
odel5s, ode45, and others. The Matlab function ode23 uses a combination of
Runge—Kutta methods of order 2 and 3 and uses an adaptive time step size. The
Matlab function ode23s is designed for a stift system of ODE.

Consider a general parabolic equation of the form

ug(x, 1) = Lu(x, 1) + f(x, 1) ,

where L is an elliptic operator. Let L;, be a corresponding finite difference oper-
ator acting on a grid x; =a + ih. We can form a semidiscrete system of ODEs
of form

ou; . _
CE = L) + (1)

where U;(¢) ~ u(x;, t) is the spatial discretization of u(x, ¢) along the line x = x;,
i.e., we only discretize the spatial variable. For example, the heat equation with

a source u; = Buyy + fwhere L= 30°/0x? is represented by L, = 362, produces
the discretized system of ODE

U, (t —2U; (1) + Us(t t
M) _ 20000 810 i,
azgt(z) :/BUil(l)—2(2i2(l)+Ui+l(t) fn), =23 m =2,
OUn(1) _ gUn2(t) = 2Up1()) | 8200 | (o (4.9)

ot h? h?

“c04” — 2017/7115 — 13:10 — page 86 — #9

86 FD Methods for Parabolic PDEs

and the initial condition is
Ui(0) =up(x;,0), i=1,2,...,m—1. (4.10)

The ODE system can be written in the vector form

Y_rwn, y0)=w. @.11)

dt
The MOL is especially useful for nonlinear PDEs of the form u, = f(0/0x, u, t).
For linear problems, we typically have

dy _

A
i y+e¢,

where A is a matrix and ¢ is a vector. Both 4 and ¢ may depend on ¢.

There are many efficient solvers for a system of ODEs. Most are based on
high-order Runge—Kutta methods with adaptive time steps, e.g., ODE suite in
Matlab, or dsode.f available through Netlib. However, it is important to recog-
nise that the ODE system obtained from the MOL is typically stiff, i.e., the
eigenvalues of A4 have very different scales. For example, for the heat equation
the magnitude of the eigenvalues range from O(1) to O(1/h?). In Matlab, we
can call an ODE solver using the format

[t,y] = ode23s('yfun-mol', [0, t finall, yO0);

The solution is stored in the last row of y, which can be extracted using

[mr,nc] = size(y);
ysol = y(mr, :);

Then ysol is the approximate solution at time ¢ =¢_ final. To define the ODE
system of the MOL, we can create a Matlab file, say yfun-mol.m whose contents
contain the following

function yp = yfun-mol (t,y)

global m h x
k = length(y); yp=size(k,1);

yp(1l) = (-2*y (1) + y(2))/(h*h) + £(t,x(1)) + gl(t)/(h*h);
for i=2:m-2
yp(i) = (y(i-1) -2*y (1) + y(2))/(h*h) + £(t,x(i));
end
yp(m-1) = (y(m-2) -2*y(m-1))/(h*h) + £(t,x(i)) + g2(t)/(h*h);

where g1(7) and g2(¢) are two Matlab functions for the boundary conditions at
x=aand x =b; and f'(¢, x) is the source term.

“c04” — 2017/7/15 — 13:10 — page 87 — #10

4.3 The Crank—Nicolson Scheme 87

The initial condition can be defined as

global m h x
for i=1:m-
yo0 (1)

N =

u 0(x(i));

end

where u(x) is a Matlab function of the initial condition.

4.3 The Crank—Nicolson Scheme

The time step constraint At = h?/(23) for the explicit Euler method is generally
considered to be a severe restriction, e.g., if 4= 0.01, the final time is 7= 10 and
=100, then we need 2 x 107 steps to get the solution at the final time. The
backward Euler method does not have the time step constraint, but it is only
first-order accurate. If we want second-order accuracy O(h?), we need to take
At = O(h?*). One finite difference scheme that is second-order accurate both in
space and time, without compromising stability and computational complexity,
is the Crank—Nicolson scheme.

The Crank—Nicolson scheme is based on the following lemma, which can be
proved easily using the Taylor expansion.

Lemma 4.3. Let ¢(t) be a function that has continuous first- and second-order
derivatives, i.e., ¢(t) € C2. Then

o(1) :% (qb <t — Azt) + ¢ <z+ A;)) + (Agt)zu”(t) +hot. (4.12)

Intuitively, the Crank—Nicolson scheme approximates the PDE

Ur= (Bux)x +f(x7 t)

at (x;,t* + At/2), by averaging the time level % and %! of the spatial
derivative V - (8Vu)) and f'(x, t). Thus it has the following form

k k k \pk o gk Tk
Ukttt — ok Bi—%Uf'il - (Bi—% +ﬁi+%>Ui +BH—% Uit
At 2h?

k+1 yrk+1 k+1 k+1 k+1 k+1 yrk+1
BINUSY — (B + BT U + B UL
=3 =3 i+3 *t3

1 k k41
n o +§<f,. +fi+>.(4.13)

The discretization is second order in time (central at # + Az/2 with step size
At/2) and second order in space. This can easily be seen using the following

“c04” — 2017/7/15 — 13:10 — page 88 — #I1

88 FD Methods for Parabolic PDEs

relations, taking § =1 for simplicity:

2
u(x,t+ AAt)l u(x, t) —uy(x, 1+ At)2) +l <A2t) U (x, ¢+ At/2)

3
+0((An)?),
u(x —hyt) — 2u(x,t) + u(x + h, 1)
2h?
u(x — hyt + At) — 2u(x, t + At) + u(x + h, t + Ar)
21?

=u.(x,1) + O(h?),

=up(x, 1+ Af) + O(hz) ,

3 (e) el 14 80)) =l 1+ A1/2) + O((A1)),

3 (1) 701+ 80) =7(x, 1+ Aj2) + O((Ar))

At each time step, we need to solve a tridiagonal system of equations to get
Uik+1. The computational cost is only slightly more than that of the explicit
Euler method in one space dimension, and we can take Az~ & and have second-
order accuracy. Although the Crank—Nicolson scheme is an implicit method,
it is much more efficient than the explicit Euler method since it is second-
order accurate both in time and space with the same computational complexity.
A sample Matlab code crank.m is accompanied with the book. If we use a fixed
time step A¢=h, given a final time 7, we can easily get the number of time
marking steps as Ny =int(T/h) as used in the crank.m. In the next section, we
will prove it is unconditionally stable for the heat equation.

4.3.1 A Class of One-Step FD Methods: The 6-Method
The 6-method for the heat equation u; = uy, + f(x, ¢) has the following form:

Ukt — yk
= UR (L= 0 U o+ (10
When 6 =1, the method is the explicit Euler method; when 6 = 0, the method
is the backward Euler method; and when 6 =1/2, it is the Crank—Nicolson
scheme. If 0 < # < 1/2, then the method is unconditionally stable, and otherwise
it is conditionally stable, i.e., there is a time step constraint. The -method is
generally first order in time and second order in space, except for 6 =1/2.

The accompanying Matlab codes for this chapter included Euler, Crank—
Nicolson, ADI, and MOL methods.

“c04” — 2017/7/15 — 13:10 — page 89 — #I12

4.4 Stability Analysis for Time-Dependent Problems 89

4.4 Stability Analysis for Time-Dependent Problems

A standard approach to stability analysis of finite difference methods for time-
dependent problems is named after John von Neumann and based on the
discrete Fourier transform (FT).

4.4.1 Review of the Fourier Transform
Let us first consider the Fourier transform in continuous space. Consider u(x) €

o
L*(—00,00), ie., / u?dx < oo or ||u]|» < 0. The Fourier transform is defined

—00

as

i(w) = \/12? / b ey (x)dx (4.14)

where i =+/—1, mapping u(x) in the space domain into #(w) in the frequency
domain. Note that if a function is defined in the domain (0,00) instead of
(—o00,00), we can use the Laplace transform. The inverse Fourier transform is

u(x)= \/12? /00 e ii(w)dw . (4.15)

Parseval’s relation: Under the Fourier transform, we have ||it|, = ||u|, or

/ |i¢|2dw:/ |u|dx . (4.16)

From the definition of the Fourier transform we have

—

il . u . .
<0w> = —ixu, e iwit . 4.17)

To show this we invoke the inverse Fourier transform

8u(x) _ 1 /OO eiwx @ dw
ox V21 J oo ox
so that, since u(x) and #i(w) are both in L?(—o00,00), on taking the partial
derivative of the inverse Fourier transform with respect to x we have
Ou(x) 1 /006 o ~ 1 /OO.A~
=— — (" U) dw=——= iwue'™™ dw .
Ox V21 J oo Ox () V2T J -0

Then as the Fourier transform and its inverse are unique, Ou/Jx = iwu. The
proof of the first equality is left as an exercise. It is easy to generalize the

“c04” — 2017/7/15 — 13:10 — page 90 — #I13

90 FD Methods for Parabolic PDEs

equality, to set

— = (iw)"u (4.18)
i.e., we remove the derivatives of one variable.
The Fourier transform is a powerful tool to solve PDEs, as illustrated below.
Example 4.4. Consider
u; + au, =0, —co<x<oo, t>0, u(x,0)=uy(x)

which is called an advection equation, or a one-way wave equation. This is a
Cauchy problem since the spatial variable is defined in the entire space and
t > 0. On applying the FT to the equation and the initial condition,

u, +auy=0, or u +aiwi=0, u(w,0) =i (w)
i.e., we get an ODE
i(w, 1) =ii(w, 0) e ™" =iy (w) e~ !

for &(w). The solution to the original advection equation is thus

1 . i
u(x,t) = %277/ e i (w) e dw

1 Rl
_ iw(x—at) s d
= — e Uplw) dw
vV 27 /oo O()
=u(x —at,0),

on taking the inverse Fourier transform. It is notable that the solution for the
advection equation does not change shape, but simply propagates along the
characteristic line x — at =0, and that

] = Nlill2 = [[e(w, 0)e ™" ||2 = ir(w, 0) || = [luo]|>
Example 4.5. Consider

Uy = Buyy, —oo<x<oo, t>0, u(x,0)=up(x), lim u=0,
|x]—o00

involving the heat (or diffusion) equation. On again applying the Fourier
transform to the PDE and the initial condition,

i =By, or o;=p>w)i=—Bu, w,0)=in(w),
and the solution of this ODE is

i(w, 1) = ii(w, 0) e <" |

“c04” — 2017/7/15 — 13:10 — page 91 — #14

4.4 Stability Analysis for Time-Dependent Problems 91

Consequently, if 8 > 0, from the Parseval’s relation, we have
A~ ~ _ 2
lul|2 = it} = || (e, 0)e || < luo]| -

Actually, it can be seen that lim,, ||u|| =0 and the second-order partial
derivative term is call a diffusion or dissipative. If 5 < 0, then lim,_, » ||u||» = 00
the PDE is dynamically unstable.

Example 4.6. Dispersive waves.
Consider

a2m+ 1 u 82mu
8x2m+ 1 + ax2m

U= + lLo.t.,

where m is a nonnegative integer. For the simplest case u; = uy, we have

—

Uy = Py, OF U= ﬁ(iw)%: = —iwu,
and the solution of this ODE is
ii(w, 1) = ii(w, 0) e |
Therefore,
[Jull2 = []itl]2 = [[it(w, 0) |2 = [[u(w, O)]]2,

and the solution to the original PDE can be expressed as

(X [IUJY i)efiuﬂt dw

vl

N

Evidently, the Fourier component with wave number w propagates with velocity

w?, so waves mutually interact but there is no diffusion.

Example 4.7. PDEs with higher-order derivatives.
Consider

2m 2m—1
oM™u 0 u
8x2m + 8)62'" -1

where m is a nonnegative integer. The Fourier transform yields
—awiy 4 ifm=2k + 1,
aw i+ - if m=2k,

Ur=a + Lo.t.,

L/t\l (lw)2mu+ L —

“c04” — 2017/7/15 — 13:10 — page 92 — #I5

92 FD Methods for Parabolic PDEs

:

such that u; = uy, and u; = —uyy, are dynamically stable, whereas u; = —uy
and u; = uyyxy are dynamically unstable.

hence
(w,0) e~ @™ . if =2k + 1,
(0,0) ™ 4. if m=2k

=

=

4.4.2 The Discrete Fourier Transform

Motivations to study a discrete Fourier transform include the stability analysis
of finite difference schemes, data analysis in the frequency domain, filtering
techniques, etc.

Definition 4.8. If ... ,v_»,v_q1, v, v{, v2,... denote the values of a continuous
function v(x) at x; =i h, the discrete Fourier transform is defined as

a(g):\/lzf7T > hem ;. (4.19)
J=—00

Remark 4.9.

e The definition is a quadrature approximation to the continuous case, i.e., we
approximate | by Y, and replace dx by A.

e (&) is a continuous and periodic function of £ with period 27 /A, since
e~ IhEXT/h) — o= ihE 2T — o—ikjh (4.20)

so we can focus on ¥(¢§) in the interval [—7/h, 7w /h], and consequently have
the following definition.

Definition 4.10. The inverse discrete Fourier transform is

v-—L o () de 4.21)
= s . .

Given any finite sequence not involving 4,
V1,V2, -+, VM,
we can extend the finite sequence according to the following

---70707V1;V27--~;VM70707---7

“c04” — 2017/7/15 — 13:10 — page 93 — #16

4.4 Stability Analysis for Time-Dependent Problems 93

and alternatively define the discrete Fourier and inverse Fourier transform as

ey] Zoo —igj, ZM —igj
R S LN
V= N e~ v(€) dg . (4.23)

We also define the discrete norm as

[¥lln= (4.24)
which is often denoted by ||v||,. Parseval’s relation is also valid, i.e.,
2 o/ 2 - 2 2
= [@rdE= 3 ninP =l 4.25)

j=—o0

4.4.3 Definition of the Stability of a FD Scheme

A finite difference scheme PA,sz;-‘ =0 is stable in a stability region A if for any
positive time 7 there is an integer J and a constant C7 independent of A¢ and
h such that

J
V[l < Cr Y v, (4.26)
j=0

for any n that satisfies 0 <nAr < T'with (At,h) € A.
Remark 4.11.

1. The stability is usually independent of source terms.

2. A stable finite difference scheme means that the growth of the solution is at
most a constant multiple of the sum of the norms of the solution at the first
J + 1 steps.

3. The stability region corresponds to all possible Az and / for which the finite
difference scheme is stable.

The following theorem provides a simple way to check the stability of any
finite difference scheme.

Theorem 4.12. If |v<tL|, < ||V¥||, is true for any k, then the finite difference
scheme is stable.

“c04” — 2017/7/15 — 13:10 — page 94 — #17

94 FD Methods for Parabolic PDEs

Proof: From the condition, we have
IV < [V < < IV e < IV s

and hence stability for /=0 and Cr=1.

4.4.4 The von Neumann Stability Analysis for FD Methods

The von Neumann stability analysis of a finite difference scheme can be
sketched briefly as Discrete scheme = discrete Fourier transform = growth
factor g(§) = stability (|g(£)| < 1?). We will also explain a simplification of
the von Neumann analysis.

Example 4.13. The forward Euler method (FW-CT) for the heat equation u, =

Buyy 1s
UK | —2Uf + UF BAt
U = Ur + < ! th T = - 4.27)
From the discrete Fourier transform, we have the following
1 ho
Uk — MUK (&) de (4.28)
/ F —x/h (

1 /h . 1 he
U* KUV K (6)d HEME TR ()de , (4.29
/+1 m el (E) E \/7 /i (’g) €)

and similarly
Ut = ’ AN e~ Eh Tk (&) d . (4.30)
V2 —7/h

Substituting these relations into the forward Euler finite difference scheme, we
obtain
w/h

-l [
\/ Vor Jox /h

On the other hand, from the definition of the discrete Fourier transform, we
also know that

@h 1+ p(e™® —2 4 e’fh)) UK(€)de. (4.31)

1 w/h
U{‘“:E / ; MUK () de (4.32)

The discrete Fourier transform is unique, which implies

U ()= (14 (e =2+ M) UK =g TF(©), @33)

“c04” — 2017/7/15 — 13:10 — page 95 — #I18

4.4 Stability Analysis for Time-Dependent Problems 95
where
g(&) =1+ p(e™®" — 2+ (4.34)

is called the growth factor. If |g(€)| < 1, then | U¥t!| < | U¥| and thus |[UF! ||, <
U ||, so the finite difference scheme is stable.

Let us examine |g(§)| now. We have

2(&) = 1+ p(cos(—&h) — isin(&h) — 2 + cos(Eh) + isin(Eh))

- (4.35)
=1+42pu(cos(¢h) —1)=1—4usin“(£h)/2,
but we need to know when |g(£)| <1, or —1 < g(£) < 1. Note that
1< —4p <1 —4psin®(Eh) 2=g(¢) <1, (4.36)

so on taking —1 <1 — 4 we can guarantee that |g(£)| < 1, which implies the
stability. Thus a sufficient condition for the stability of the forward Euler
method is
h2
—1<1—4p or 4u<2, or Atgﬁ. (4.37)
Although we cannot claim what will happen if this condition is violated, it
provides an upper bound for the stability.

4.4.5 Simplification of the von Neumann Stability Analysis
for One-Step Time Marching Methods

Consider the one-step time marching method U**+! = £(U*, U¥*1). The follow-
ing theorem provides a simple way to determine the stability.

Theorem 4.14. Let 0 = h€. A one-step finite difference scheme (with constant
coefficients) is stable if and only if there is a constant K (independent of 0, At,
and h) and some positive grid spacing Aty and hy such that

lg(0, At,h)| <1+ KAt (4.38)

Sorall @ and 0 < h < hy. If g(0, At, h) is independent of h and At, then the stability
condition (4.38) can be replaced by

lg(0] < 1. (4.39)

Thus only the amplification factor g(h{)=g(f) needs to be considered, as
observed by von Neumann.

“c04” — 2017/7/15 — 13:10 — page 96 — #I19

96 FD Methods for Parabolic PDEs
The von Neumann stability analysis usually involves the following steps:

1. set Ujk — ¢ and substitute it into the finite difference scheme;

2. express Uijrl as U}‘“ =g(&)e, etc.;

3. solve for g(£) and determine whether or when |g(£)| <1 (for stability); but
note that

4. if there are some £ such that [g(£)| > 1, then the method is unstable.

Example 4.15. The stability of the backward Euler method for the heat

equation u; = Buyy 18

BAt
U{‘+1:U?+M(U{<_+ll — 20U Uf:ll), p="ts (4.40)

Following the procedure mentioned above, we have

2()eE — o 4y, (e"f("‘“h — 2 4 QU 1)’1> g(€)

_ it (1 ny (e,,'gh . ei&h,-) g(§)>, (4.41)
with solution
1
g(§) = 1 — p(e—h — 2 + eith)
1 1
— <1, (4.42)

1 — pu(2cos(h§) —2) T+ 4usin®(he)/2 ~

for any 4 and Az > 0. Obviously, —1 <0 < g(&) so |g(£)| <1 and the backward
Euler method is unconditionally stable, i.e., there is no constraint on At for
stability.

Example 4.16. The Leapfrog scheme (two-stage method) for the heat equation
Uy = Uy 18
Ukt — Uk UE - 2UF + U

AL =— i , (4.43)

involving the central finite difference formula both in time and space. This
method is unconditionally unstable! To show this, we use U}‘_l = el /g (&)
to get

g(€)es = @e’fhé + eh (,u(e*’éh -2+ eﬂ'))
1

= @el‘f’f — 4y, 5in%(he /2)

“c04” — 2017/7/15 — 13:10 — page 97 — #20

4.5 FD Methods and Analysis for 2D Parabolic Equations 97

yielding a quadratic equation for g(¢):

(g(£))* + 4usin’(h¢/2) g(€) — 1=0. (4.44)

The two roots are

¢l€) = —2pusin(he /2) £ /4 sin (e /2) + 1,

and one root

g(€) = —2usind (g /2) — \/4p2 sin’ (he/2) + 1

has magnitude [g(£)| > 1. Thus there are £ such that |g(£)| > 1, so the method
is unstable.

4.5 FD Methods and Analysis for 2D Parabolic Equations
The general form of a parabolic PDE is

ur + ajux + asuy = (/Bux)x + (Buy)y + Ku +f(x,y, [))

with boundary conditions and an initial condition. We need 5 > 5y > 0 for the
dynamic stability. The PDE can be written as

w=Lu+f,

where L is the spatial differential operator. The MOL can be used provided
there is a good solver for the stiff ODE system. Note that the system is
large (O(mn)), if the numbers of grid lines are O(m) and O(n) in the x- and
y-directions, respectively.

For simplicity, let us consider the heat equation u, =V - (8Vu) + f(x, y,1)
and assume [is a constant. The simplest method is the forward Euler
method:

k+1 k k k k k k k
Ulj+ :Ulj+u(Ul—l,j+ Ul+1,j+ Ul,j—1+ Ul,cj-‘rl _4Ul,j) +Azflj’

“c04” — 2017/7/15 — 13:10 — page 98 — #21

98 FD Methods for Parabolic PDEs

where ;. = 3At/h?. The method is first order in time and second order in space,
and it is conditionally stable. The stability condition is

h2
At< 45 (4.45)

Note that the factor is now 4, instead of 2 for 1D problems. To show stability
using the von Neumann analysis with /=0, set

ullj‘ = ol &1ty &) — o€ (4.46)

where £ = [¢1, &]T and x= [hyl, hyj]T,
Uyt =g(&, &) ¢ (4.47)
Note that the index is / instead of i in the x-direction, to avoid confusion with

the imaginary unit i =+/—1.
Substituting these expressions into the finite difference scheme, we obtain

8(61, &) = 1 — 4y (sin’(€1h/2) + sin’(&h/2)),
where /1, = hy, = h for simplicity. If we enforce
—1<1 - 81— dp (sin(€1h/2) + sin®(€:h/2)) <1 8y,

and take —1 <1 — 8u, we can guarantee that |g(&;,&)| < 1, which implies the
stability. Thus, a sufficient condition for the stability of the forward Euler
method in 2D is
8A? "
hzﬁ <2, or Ar<

_@7

in addition to the condition Az > 0.

4.5.1 The Backward Euler Method (BW-CT) in 2D

The backward Euler scheme can be written as

k—+1 k k+1 k+1 k+1 k+1 k+1
Uy = Uy USy+ U+ U5+ U — 4T

At h?

T S CEL)

“c04” — 2017/7/15 — 13:10 — page 99 — #22

4.6 The ADI Method 99

which is first order in time and second order in space, and it is unconditionally
stable. The coefficient matrix for the unknown Ug“ is block tridiagonal, and
strictly row diagonally dominant if the natural row ordering is used to index
the U,."J‘.Jrl and the finite difference equations.

4.5.2 The Crank—Nicolson (C-N) Scheme in 2D
The Crank—Nicolson scheme can be written as

k+1 k k+1 k+1 k+1 k+1 k+1
Uit - Uy 1 (UHJ+ Uiy, + Ui + UL —4U;

1 i+1,) ij+1
h2

k+1
At 2 /iy

/)

k k k k k
Uifl,j + Uf+17j + Ul.vj*l + Uf,j‘Fl - 4Ul] +fk> (4 49)
i |- .

+ 2

Both the local truncation error and global error are O((A7)? + 4?). The scheme
is unconditionally stable for linear problems. However, we need to solve a sys-
tem of equations with a strictly row diagonally dominant and block tridiagonal
coefficient matrix, if we use the natural row ordering for both the equations and
unknowns.

A structured multigrid method can be applied to solve the linear system of
equations from the backward Euler method or the Crank—Nicolson scheme.

4.6 The ADI Method

The ADI is a time splitting or fractional step method. The idea is to use
an implicit discretization in one direction and an explicit discretization in
another direction. For the heat equation u; = uyy + u,, + f(x, y, t), the ADI
method is

k+1 k k+1 k+1 k+1 k k k
Uy > = Uy Uy, =2U0; "+ Uy N Uijor —2U5 + Uy s
(a2 7 2 i
k+1 k+3 ke+% fe+3 k+5 k+1 k+1 k+1
Upm — Uy * Uiy —2U; "+ Uiy N U =207 + U s
(A2 7 2 i

(4.50)

which is second order in time and in space if u(x,y,?) € C*(2), where Q is
the bounded domain where the PDE is defined. It is unconditionally stable
for linear problems. We can use symbolic expressions to discuss the method,

“c04” — 2017/7/15 — 13:10 — page 100 — #23

100 FD Methods for Parabolic PDEs

rewritten as

k-i—l /C At 2 k+ At 2 k At k+
U,.jzzUij 26XVUZ+25yyU+ f 2
kL At k At At k @.51)
k+1 +3 2 +3 2 rrk 1 +3
Uii+ :Ul.j 2 4+ 25WU1, 2+ 25y}UJr 2/,] 2

Thus on moving unknowns to the left-hand side, in matrix-vector form we have

A[k-l—l_ AZ k At k+1
<1 5 Y)U z_<1+2)U 2F 2,

At kel _ At jan At
(I— 3 >U I+ 2 U 2 1,

leading to a simple analytically convenient result as follows. From the first
equation we get

1 —1
Uk+£:<1 A’DZ) <1+ A2ID§> Uk+<1 A’D2> Al gt

(4.52)

2 2 2 ’

and substituting into the second equation to have

A 5\ e Ar Ar 5\ At
(1 2Dy)U = (1+502) (1-502) (1+5 D} U

We can go further to get

At AVANC S At , At 5\ ok
<1—20x> (1—20y>U+ =(1+5Dx) (I+5D;)U

AzzAtk, At i1
I+=D Fhts Zipkts
<+2 ‘)2 2

This is the equivalent one step time marching form of the ADI method, which
will be use to show the stability of the ADI method later. Note that in this
derivation we have used

At , At 5\ At , At ,
<1+ 2D><I+2D>_<I+2D><I+ 2D

and other commutative operations.

“c04” — 2017/7/15 — 13:10 — page 101 — #24

4.6 The ADI Method 101

4.6.1 Implementation of the ADI Algorithm

The key idea of the ADI method is to use the implicit discretization dimension
by dimension by taking advantage of fast tridiagonal solvers. In the x-direction,
the finite difference approximation is

! At At At
Uyt = U+ ST SR U+ ST

ij /) 7wy :

. - . ko kel
For a fixed j, we get a tridiagonal system of equations for Ulj.+2, U2j+2, e
1

k+1 : .. .
UmJ_rf j» assuming a Dirichlet boundary condition at x=a and x=5. The

system of equations in matrix-vector form is

ol -
i Sl oy
14+2u —p 1
k+3
- 14+2p —p Uy
k41
—p 1+2p—p U3j+2 -
=F,
—pu 142 - ket
p fno—p Uit
L H - k+5
Umfl,j
where
I ko AL k] Jet-4 Ut koLph 1
Ul,j+7f'1j + pupe(a, y;) T2 4 (-1 —2U7; + 1,j+1)
At kth
Ufﬂf by (U =20+ U)
Y S (U - 2K T
- Uy + Sy (Us o =205+ Us)
k+1
U;ﬁ—z,ﬂr fm 5+ (UII;—Z_]‘ 11— 2Uf§1 Ulr§1—2,_/‘+1)
At jtd 1
Um 1/+) fm 121+ (ljﬁl—l,j 1~ 2Uﬁ1 Uj;—l,j—&-l)+,uubc(bayj)k+7_

k+1 .
and u= BzTA;, and f; 2 =f(x,t k+%). For each j, we need to solve a symmetric
tridiagonal system of equations. The cost for the x-sweep is about O(5mn).

“c04” — 2017/7/15 — 13:10 — page 102 — #25

102 FD Methods for Parabolic PDEs

4.6.1.1 A Pseudo-code of the ADI Method in Matlab
for j = 2:n, % Loop for fixed j
A = sparse(m-1,m-1); b=zeros(m-1,1);
for i=2:m,

b(i-1) = (ul(i,j-1) -2*ul(i,j) + ul(i,j+1))/h1 + ...
£(t2,x(1),y(3)) + 2*ul(i,j)/dt;
if 1 == 2
b(i-1) = b(i-1) + uexact(t2,x(i-1),y(j))/hl;
A(i-1,1i) = —l/hl
else
if i==m
b(i-1) = b(i-1) + uexact(t2,x(i+1),v(j))/hl;
A(i-1,i-2) = -1/h1;
else
A(i-1,i) = -1/h1;
A(i-1,i-2) = -1/hl;
end
end
A(i-1,i-1) = 2/dt + 2/hil;
end
ut = A\b; % Solve the diagonal matrix.
R loop in the y direction ------------—----—-—-~—-~-~-~—-~—~--
for 1 = 2:m,
A = sparse(m-1,m-1); b=zeros(m-1,1);
for j=2:n,
b(j-1) = (u2(i-1,3j) -2*u2(i,j) + u2(i+1,3))/hl + ...
f(t2,x(i),y(3)) + 2*u2(i,j)/dt;
if §j == 2
b(j-1) = b(j-1) + uexact(tl,x(i),y(j-1))/hl;
A(j-1,3) = -1/h1;
else
if j==n
b(j-1) = b(j-1) + uexact(tl,x(i),y(j+1))/hl;
A(j-1,j-2) = -1/h1;
else
A(]_]-,]) = _1/h1i
A(j-1,j-2) = -1/h1;
end
end
A(j-1,3-1) = 2/dt + 2/h1; % Solve the system
end
ut = A\b;

A Matlab test code adi.m can be found in the depository directory of this
chapter.

“c04” — 2017/7/15 — 13:10 — page 103 — #26

4.6 The ADI Method 103

4.6.2 Consistency of the ADI Method
Adding the two equations in (4.50) together, we get

U-k-+1 _ k

- —252 k+ 2 k+1 k k+1
—aga =08 (U U 2T sy

and if we subtract the first equation from the second equation, we get
1
auy =2 (Ut 1 Uf) - A, (U -). (4.54)

Substituting this into (4.53) we get

At Ut - Uf Ui - UF ksl
<1 (4) 53)(55}) = (+) L sy @59)

and we can clearly see that the discretization is second-order accurate in both
space and time, ie., Tﬁi =0((A1)? + 1?).

4.6.3 Stability Analysis of the ADI Method
Taking f'=0 and setting

UII/C = ei(€1h11+£2/12/)7 Uk+1 _g(& 52) §1hll+£2hz/) (4.56)
on using the operator form we have
At 4 At ,) At 5 At 4
(1 5 — 05 > (1 5 5},y> U =(1+ 75,“ 1+ 5 -0y U;1=

which yields,

At As
(62 > <1_ 2 yy) g(&,&)e i(&1h I+&haj))

_ <1 Aldz) <1 Af(52> (€ +Ealof)

After some manipulations, we get

(1 — 4y sinz(glh/z)) (1 —4u sinz(gzh/2)>
(1+ 4y sinz(glh/z)) (1 +dp sin2(§2h/2)> ’

g(§17§2) -

“c04” — 2017/7/15 — 13:10 — page 104 — #27

104 FD Methods for Parabolic PDEs

where u= 2% and for simplicity we have set 4, =h, =h. Thus [g(§1,&)| <1,

no matter what Az and /% are, so the ADI method is unconditionally stable for
linear heat equations.

4.7 An Implicit—Explicit Method for Diffusion
and Advection Equations

Consider a diffusion and advection PDE in 2D
u+w-Vu=V- (/Bvu) +f(x7y7 t)

where w is a 2D vector, and V is the gradient operator in 2D, see page 48.
In this case, it is not so easy to get a second-order implicit scheme such that
the coefficient matrix is diagonally dominant or symmetric positive or negative
definite, due to the advection term w - Vu. One approach is to use an implicit
scheme for the diffusion term and an explicit scheme for the advection term, of
the following form from time level ¥ to K+

k+1 _ ok
u"m —u 11 1
—a; H (W Vi) = 3 ((Vh BV) + (V- 5th)k+l) +f4,
(4.57)
where
3 1

(W Vyu)ktz = S WVt = (w- V)t (4.58)
where Vju = [0xu, d,u]”, and at a grid point (x;, y;), they are

RTEeR A S P IR AN (4.59)

2hy ’ } 2h,

We treat the advection term implicitly, since the term only contains the first-
order partial derivatives and the CFL constraint is not a main concern unless
|lw|| is very large. The time step constraint is

h
~ 2wl

(4.60)

At each time step, we need to solve a generalized Helmholtz equation

2 k+1 2 k
= Ay F 2wVt (Vv - ot
(4.61)

(v . Bv”)k+l B

“c04” — 2017/7/15 — 13:10 — page 105 — #28

Exercises 105

We need u' to get the scheme above started. We can use the explicit Euler
method (FW-CT) to approximate u', as this should not affect the stability and
global error O((At)? + h?).

4.8 Solving Elliptic PDEs using Numerical Methods
for Parabolic PDEs

We recall the steady-state solution of a parabolic PDE is the solution of the
corresponding elliptic PDE, e.g., the steady-state solution of the parabolic PDE
u=V-(BVu) +w-Vu+f(x,1t)
is the solution to the elliptic PDE
V- (BVu) +w-Vu+f(x)=0,
if the limit
Jix) = lim £(x, 1)

exists. The initial condition is irrelevant to the steady-state solution, but the
boundary condition is relevant. This approach has some advantages, especially
for nonlinear problems where the solution is not unique. We can control the
variation of the intermediate solutions, and the linear system of equations is
more diagonally dominant. Since we only require the steady-state solution, we
prefer to use implicit methods with large time steps since the accuracy in time
is unimportant.

Exercises
1. Show that a scheme for
Uy = B Uxx (462)

of the form

1-— ,
U}k+l :OéUi'(+ TOC (Uiﬁ-l + U,'l_1>

where a =1 —28u, p=At/h*is consistent with the heat equation (4.62). Find the order
of the discretization.
2. Show that the implicit scheme

AtB U,-k+] - Uz’k _ " 2 gk
(1 T 6xx) <Al - ﬁ 1 ﬁ 6xx 6xx Ui (463)

“c04” — 2017/7/15 — 13:10 — page 106 — #29

FD Methods for Parabolic PDEs

for the heat equation (4.62) has order of accuracy ((Af)?, h*), where

U1 —2U;i + Uiy
h? ’

and Ar=O(k*). Compare this method with FW-CT, BW-CT, and Crank—Nicolson
schemes and explain the advantages and limitations. (Note: The stability condition of the
scheme is B < 3).

. For the implicit Euler method applied to the heat equation u; = uyy, is it possible to choose
At such that the discretization is O((A7)? + h*)?

. Consider the diffusion and advection equation

w +ue=Pux, B>0. (4.64)

§3.Ui=

Use the von Neumann analysis to derive the time step restriction for the scheme

Ukt — Uk N Uk, — UL, Uk, —2UF 4+ UL,
At 2h 2 '

. Implement and compare the Crank—Nicolson and the MOL methods using Matlab for the
heat equation:

=B

u = Pux +f(x,1), a<x<b, t>0,

u(x,0) =uo(x); ula, 1) =gi(t); ux(b,1)=2:(1),

where 3 is a constant. Use u(x, t) = (cos) x” sin(rx), 0 < x < 1, tfinal=1.0 to test and
debug your code. Write a short report about these two methods. Your discussion should
include the grid refinement analysis, error and solution plots for m = 80, comparison of
cputime, and any conclusions you can draw from your results. You can use Matlab code
odel5s or ode23s to solve the semidiscrete ODE system.

Assume that u is the temperature of a thin rod with one end (x = b) just heated. The other
end of the rod has a room temperature (70° C). Solve the problem and find the history of
the solution. Roughly how long does it take for the temperature of the rod to reach the
steady state? What is the exact solution of the steady state? Hint: Take the initial condition
asu(x,0)=T, e~ 6=D"/7 where Ty and ~ are two constants, /' (x, t) = 0, and the Neumann
boundary condition u,(b,) =0.

. Carry out the von Neumann analysis to determine the stability of the # method

U.(n+l) _ U~"
L =b (080" + (1 - 0)8U"Y) (4.65)

for the heat equation u; = bu,,, where

2 U1 =20+ Ui
RUy= o

. Modify the Crank—Nicolson Matlab code for the backward Euler’s method and for variable
B(x, t)’s in one space dimensions. Validate your code.

. Implement and compare the ADI and Crank—Nicolson methods with the SOR(w) (try to
test optimal w) for the following problem involving the 2D heat equation:

and 0<60<I.

U=ty +ttyy + f(1,x,y), a<x<b, c¢<y<d, t>0,

u(0, x,y) =uo(x,y),

“c04” — 2017/7/15 — 13:10 — page 107 — #30

Exercises 107

and Dirichlet boundary conditions. Choose two examples with known exact solutions to
test and debug your code. Write a short report about the two methods. Your discussion
should include the grid refinement analysis (with a fixed final time, say 7= 0.5), error and
solution plots, comparison of cpu time and flops, and any conclusions you can draw from
your results.

9. Extra credit: Modify the ADI Matlab code for variable heat conductivity 3(x, y).

