MA/CSC 580

Homework \#2
Due Tuesday, 10/1, 2019

1. Find $\|x\|_{p}, p=1,2, \infty$ for the following vectors
(a) $\mathbf{x}=(3,-4,0,-3 / 2)^{T}$.
(b) $\mathbf{x}=\left(\sin k, \cos k, 2^{k}\right)^{T}$ for a fixed positive integer k.
(c) $\mathbf{x}=\left(4 /(k+1),-2 / k^{2}, k^{2} e^{-k}\right)^{T}$ for a fixed positive integer k.
2. Find $\|A\|_{p}, p=1,2, \infty$ for the following matrices:

$$
\left[\begin{array}{cc}
1 & 2 \\
0 & -3
\end{array}\right] ; \quad\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]
$$

3. (a) Show that $\|x\|_{\infty}$ is equivalent to $\|x\|_{2}$. That is to find constants C and c such that $c \leq\|x\|_{\infty} \leq$ $\|x\|_{2} \leq C\|x\|_{\infty}$. Note that you need to determine such constants that the equalities are true for some particular x.
(b) Show that $\|Q x\|_{2}=\|x\|_{2}$. Where Q is an orthogonal matrix $\left(Q^{H} Q=I, Q Q^{H}=I\right)$.
(c) Show that $\|A B\| \leq\|A\|\|B\|$ for any natural matrix norm, and $\|Q A\|_{2}=\|A\|_{2}$.
4. Given

$$
A=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 0 & 1 & 2 \\
2 & 3 & 0 & 1 \\
1 & 2 & 3 & 0
\end{array}\right], \quad b=\left[\begin{array}{c}
6 \\
6 \\
6 \\
6
\end{array}\right]
$$

(a) Use Gaussian elimination with the partial pivoting to find the matrix decomposition $P A=L U$. This is a paper problem and you are asked to use exact calculations (use fractions if necessary).
(b) Find the determinant of the matrix A.
(c) Use the factorization to solve $A x=b$.
5. Consider solving $A X=B$ for $X, A \in R^{n, n}, B \in R^{n, m}$. There are two obvious algorithms. The first one is to get $A=P L U$ using Gaussian elimination, and then to solve for each column of X by forward and backward substitution. The second algorithm is to compute A^{-1} using Gaussian elimination and then to multiply $A^{-1} B$ to get X. Count the number of operations by each algorithm and determine which one is faster.
6. (Programming Part) Given a sequence of data

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{m}, y_{m}\right),\left(x_{m+1}, y_{m+1}\right)
$$

write a program to interpolate the data using the following model

$$
y(x)=a_{0}+a_{1} x+\cdots+a_{m-1} x^{m-1}+a_{m} x^{m}
$$

(a) Derive the linear system of equations for the interpolation problem.
(b) Let $x_{i}=(i-1) h, i=1,2, \cdots, m+1, h=1 / m, y_{i}=\sin \pi x_{i}$, write a computer code using the Gaussian elimination with column partial pivoting to solve the problem. Test your code with $m=4,8,16,32,64$ and plot the error $|y(x)-\sin \pi x|$ with 100 or more points between 0 and 1 , that is, predict the function at more points in addition to the sample points. For example, you can set $h 1=1 / 100 ; x 1=0: h 1: 1, \quad y 1(i)=a_{0}+a_{1} x 1(i)+\cdots+a_{m-1}(x 1(i))^{m-1}+a_{m}(x 1(i))^{m}$, $y 2(i)=\sin (\pi x 1(i)), \operatorname{plot}(x 1, y 1-y 2)$.
(c) Record the CPU time (in Matlab type help cputime) for $m=50,100,150,200, \cdots, 350,400$. Plot the CPU time versus m. Then use the Matlab function polyfit $z=\operatorname{polyfit}(m$, cputime $(m), 3)$ to find a cubic fitting of the CPU time versus m. Write down the polynomial and analyze your result. Does it look like a cubic function?
7. Extra Credit: Choose one from the following (Note: please do not ask the instructor about the solution since it is extra credit):
(a) Show that if a lower triangular system

$$
L x=b
$$

is solved in floating arithmetic, then there exists a lower triangular matrix δL such that the computed solution \bar{x} satisfies the system

$$
(L+\delta L) \bar{x}=b
$$

assuming that all the entries in L and b are floating point numbers already. Estimate the relative error of the computed solution.
(b) Show that if A is a symmetric positive definite matrix, then after one step of Gaussian elimination (without pivoting), then reduced matrix A_{1} in

$$
A \Longrightarrow\left[\begin{array}{cc}
a_{11} & * \\
0 & A_{1}
\end{array}\right]
$$

must be symmetric positive definite. Therefore no pivoting is necessary.

