1. Let $C^{0}(a, b)$ denote the space of continuous functions on the interval [a,b]. Using the fact that the sum of continuous functions is continuous and the product of a continuous function with a scalar is again a continuous function, one can show that this space is a vector space. Another vector space of interest is the space $C^{2}(a, b)$ of all twice differentiable functions on the interval $[\mathrm{a}, \mathrm{b}]$.
2. In 3-dimensional space one introduces the "dot product" to define such things as: norm of a vector, inner product of two vectors, angle between two vectors, orthogonality of two vectors, and more. We can also introduce an inner product in the space $C^{0}(a, b)$ as follows:
DEF: The inner product of two vectors $f, g \in C^{0}(a, b)$ is the number

$$
(f, g)=\int_{a}^{b} f(x) g(x) d x
$$

3. Using this inner product we can make a few definitions patterned after the definitions we know from 3-dimensional space.

DEF: Two vectors $f, g \in C^{0}(a, b)$ are orthogonal if $(f, g)=0$.
DEF: The norm of a vector $f \in C^{0}(a, b)$ is the number $\|f\|=\sqrt{(f, f)}$.
DEF: A infinite collection of vectors $\mathcal{B}=\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ is an orthogonal set if
(a) The norm $\left\|f_{i}\right\|$ of each vector $f_{i} \in \mathcal{B}$ in the collection is non-zero for all $i=$ $1,2,3, \ldots$
(b) The vectors are mutually orthogonal. That is too say, $\left(f_{i}, f_{j}\right)=0$ for $i \neq j$, for all $i, j=1,2,3, \ldots$
Furthermore, if each vector $f_{i} \in \mathcal{B}$ has norm 1, then the collection \mathcal{B} is an orthonormal set of vectors.
4. It turns out that we must generalize the above definition slightly in order to handle certain cases that we will study. Here is the generalization.
DEF: Let $w(x)$ we a non-negative-valued, piecewise continuous function that is not identically zero on any subinterval of $[a, b] . w(x)$ is called a weight function. The inner product with respect to the weight $w(x)$ of two vectors $f, g \in C^{0}(a, b)$ is the number

$$
(f, g)=\int_{a}^{b} w(x) f(x) g(x) d x
$$

All of the definitions above in 3 have generalizations where the weight function $w(x)$ is included in the integrand in the definition, and we add the words with respect to the weight $w(x)$ to each definition. For example:
DEF: Two vectors $f, g \in C^{0}(a, b)$ are orthogonal with respect to the weight $w(x)$ if

$$
(f, g)=\int_{a}^{b} w(x) f(x) g(x) d x=0
$$

DEF: The norm of $f \in C^{0}(a, b)$ with respect to the weight $w(x)$ is

$$
\|f\|=\sqrt{\int_{a}^{b} w(x) f(x)^{2} d x}
$$

Regular, Periodic and Singular Sturm-Liouville Problems

In the three problems listed below we make the following assumptions. We assume that the functions $p(x), p^{\prime}(x), q(x)$ and $r(x)$ are continuous on the interval $a \leq x \leq b$, and that $p(x)>0$ and $r(x)>0$ on the open interval $a<x<b$.

1. A Regular SL - Problem on [a,b]: We assume additionally that $p(x)>0$ and $r(x)>0$ at the endpoints of the interval.
Find numbers λ for which there are non-trivial solution of the ODE

$$
\left(p(x) y^{\prime}\right)^{\prime}+(q(x)+\lambda r(x)) y(x)=0
$$

and the regular boundary conditions

$$
\begin{array}{rlr}
a_{1} y(a)+a_{2} y^{\prime}(a)=0 & a_{1}^{2}+a_{2}^{2} \neq 0 \\
b_{1} y(b)+b_{2} y^{\prime}(b)=0 & b_{1}^{2}+b_{2}^{2} \neq 0
\end{array}
$$

Example: $y^{\prime \prime}+\lambda y=0, y(0)=0, y(1)=0$.
2. A Periodic SL - Problem on [a,b]: We assume additionally that $p(a)=p(b)$.

Find numbers λ for which there are non-trivial solution of the ODE

$$
\left(p(x) y^{\prime}\right)^{\prime}+(q(x)+\lambda r(x)) y(x)=0
$$

and the periodic boundary conditions

$$
\begin{aligned}
y(a) & =y(b) \\
y^{\prime}(a) & =y^{\prime}(b)
\end{aligned}
$$

Example: $y^{\prime \prime}+\lambda y=0, y(-\pi)=y(\pi), y^{\prime}(-\pi)=y^{\prime}(\pi)$.
3. A Singular SL - Problem on [a,b]: Find numbers λ for which there are non-trivial solution of the ODE

$$
\left(p(x) y^{\prime}\right)^{\prime}+(q(x)+\lambda r(x)) y(x)=0
$$

and one of the following three types of boundary conditions:
(a) TYPE I: $p(a)=0$ and

$$
b_{1} y(b)+b_{2} y^{\prime}(b)=0 \quad b_{1}^{2}+b_{2}^{2} \neq 0
$$

(b) TYPE II: $p(b)=0$ and

$$
a_{1} y(a)+a_{2} y^{\prime}(a)=0 \quad a_{1}^{2}+a_{2}^{2} \neq 0
$$

(c) TYPE III: $p(a)=p(b)=0$. Then there are no specified boundary conditions, but the solutions are required to be bounded functions on the interval $[a, b]$.
Example for TYPE III: $\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}+\lambda y=0,-1 \leq x \leq 1$. When $\lambda=n(n+1)$, $n=0,1,2, \ldots$, then the ODE is Legendre's differential equation.
4. A Singular SL - Problem on an infinite interval $(-\infty, \infty),(a, \infty)$ or $(-\infty, b)$:
5. Terminology: For any of the SL - Problems, a number λ such that a non-trivial solution exists to the ODE and boundary conditions is called an eigenvalue (e-value) of the problem, and a corresponding solution is called an eigenvector (e-vector). Note the non-trivial requirement to be an e-vector.

