I A theorem on linear homogeneous 2nd order ODE

Theorem Consider the linear second order homogenous ODE

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0 \quad(* *)
$$

where $a(x), b(x)$ and $c(x)$ are continuous on some interval I, and $a(x)$ never vanishes on I.
(a) (The representation theorem) Let y_{1} and y_{2} be two linearly independent solutions on I of $(* *)$. Then every solution y on I of $(* *)$ can be represented in the form

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

for some constants c_{1} and c_{2}.
(b) (The linear independence theorem) Two solutions y_{1} and y_{2} on I of ($* *$) are linearly independent on I if and only if the Wronskian $W\left(y_{1}, y_{2}\right)(x)$ of y_{1} and y_{2} defined below is not zero for some $x \in I$.

$$
W\left(y_{1}, y_{2}\right)(x)=\operatorname{det}\left(\begin{array}{ll}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right)
$$

II Constant coefficients

Assume that $a(x), b(x)$ and $c(x)$ in $(* *)$ are all constants, with $a \neq 0$, so the ODE is now in the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Substituting $y=e^{r x}$ into (\ddagger) above and canceling the common factor $e^{r x}$ we obtain the characteristic equation of the ODE (\ddagger):

$$
a r^{2}+b r+c=0
$$

The solutions of this equation are given by the quadratic equation: $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
Case I $b^{2}-4 a c>0$. Then we have two real distinct roots r_{1} and r_{2}, with $r_{1} \neq r_{2}$, and two linearly independent solutions on R of (\ddagger) are $y_{1}=e^{r_{1} x}$ and $y_{2}=e^{r_{2} x}$. The general solution in this case is

$$
y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}
$$

Case II $b^{2}-4 a c=0$. Then we have a repeated root $r_{1}=r_{2}$. Two linearly independent solutions on R of (\ddagger) are $y_{1}=e^{r_{1} x}$ and $y_{2}=x e^{r_{1} x}$. The general solution in this case is

$$
y=\left(c_{1}+c_{2} x\right) e^{r_{1} x}
$$

Case III $b^{2}-4 a c<0$. Then we have a pair of complex conjugate roots $r_{1}=\alpha+i \beta$ and $r_{2}=\alpha-i \beta$. Two linearly independent solutions on R of (\ddagger) are $y_{1}=e^{\alpha x} \cos (\beta x)$ and $y_{2}=e^{\alpha x} \sin (\beta x)$. The general solution in this case is

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

III The non-homogeneous problem

Theorem (The representation theorem) Consider the linear second order non-homogenous ODE

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x) \quad(* * \ddagger)
$$

where $a(x), b(x), c(x)$ and $f(x)$ are continuous on some interval I , and $a(x)$ never vanishes on I. Let y_{1} and y_{2} be two linearly independent solutions on I of the associated homogeneous equation $(* *)$ above, and let y_{p} be a particular solution ${ }^{1}$ of the non-homogeneous equation $(* * \ddagger)$. Then every solution y on I of $(* * \ddagger)$ can be represented in the form

$$
y=c_{1} y_{1}+c_{2} y_{2}+y_{p}
$$

for some constants c_{1} and c_{2}.

IV Finding particular solutions

(a) Method of undetermined coefficients for the case of constant coefficients See the textbook for the general case.
(b) Method of variation of parameters for the general case

Let y_{1} and y_{2} be two linearly independent solutions on I of the homogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ where $a(x), b(x)$ and $c(x)$ are continuous on some interval I, and $a(x)$ never vanishes on I. Then by division by $a(x)$ we can put the equation into the form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

where $p(x), q(x)$ and $g(x)$ are continuous on I . The method of variation of parameters yields a particular solution to this non-homogeneous equation.
NOTE: The formulas below required that the ODE be put in the above form, where the coefficient of $y^{\prime \prime}$ is 1 .
We assume a solution of the form $y_{p}=u_{1}(x) y_{1}+u_{2}(x) y_{2}$. The formulas for u_{1} and u_{2} are

$$
u_{1}=\int \frac{-y_{2} g(x)}{W\left(y_{1}, y_{2}\right)} d x \quad u_{2}=\int \frac{y_{1} g(x)}{W\left(y_{1}, y_{2}\right)} d x
$$

where the convention is that we choose 0 for the additive constants. Then the particular solution is given by

$$
y_{p}=y_{1}\left(\int \frac{-y_{2} g(x)}{W\left(y_{1}, y_{2}\right)} d x\right)+y_{2}\left(\int \frac{y_{1} g(x)}{W\left(y_{1}, y_{2}\right)} d x\right)
$$

[^0]
[^0]: ${ }^{1}$ i.e. y_{p} contains no arbitrary constants

