I A theorem on linear homogeneous 2nd order ODE

Theorem Consider the linear second order homogenous ODE

$$a(x)y'' + b(x)y' + c(x)y = 0 \qquad (**)$$

where a(x), b(x) and c(x) are continuous on some interval I, and a(x) never vanishes on I.

(a) (The representation theorem) Let y_1 and y_2 be two linearly independent solutions on I of (**). Then every solution y on I of (**) can be represented in the form

$$y = c_1 y_1 + c_2 y_2$$

for some constants c_1 and c_2 .

(b) (The linear independence theorem) Two solutions y_1 and y_2 on I of (**) are linearly independent on I if and only if the Wronskian $W(y_1, y_2)(x)$ of y_1 and y_2 defined below is not zero for some $x \in I$.

$$W(y_1, y_2)(x) = det \left(\begin{array}{cc} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{array} \right)$$

II Constant coefficients

Assume that a(x), b(x) and c(x) in (**) are **all constants**, with $a \neq 0$, so the ODE is now in the form

$$ay'' + by' + cy = 0 \qquad (\ddagger)$$

Substituting $y = e^{rx}$ into (‡) above and canceling the common factor e^{rx} we obtain the *characteristic equation* of the ODE (‡):

$$ar^2 + br + c = 0$$

The solutions of this equation are given by the quadratic equation: $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Case I $b^2 - 4ac > 0$. Then we have two real distinct roots r_1 and r_2 , with $r_1 \neq r_2$, and two linearly independent solutions on R of (‡) are $y_1 = e^{r_1 x}$ and $y_2 = e^{r_2 x}$. The general solution in this case is

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

Case II $b^2 - 4ac = 0$. Then we have a repeated root $r_1 = r_2$. Two linearly independent solutions on R of (‡) are $y_1 = e^{r_1 x}$ and $y_2 = x e^{r_1 x}$. The general solution in this case is

$$y = (c_1 + c_2 x)e^{r_1 x}$$

Case III $b^2 - 4ac < 0$. Then we have a pair of complex conjugate roots $r_1 = \alpha + i\beta$ and $r_2 = \alpha - i\beta$. Two linearly independent solutions on R of (‡) are $y_1 = e^{\alpha x} \cos(\beta x)$ and $y_2 = e^{\alpha x} \sin(\beta x)$. The general solution in this case is

$$y = e^{\alpha x} (c_1 \cos(\beta x) + c_2 \sin(\beta x))$$

III The non-homogeneous problem

Theorem (The representation theorem) Consider the linear second order non-homogenous ODE

$$a(x)y'' + b(x)y' + c(x)y = f(x) \qquad (**\ddagger)$$

where a(x), b(x), c(x) and f(x) are continuous on some interval I, and a(x) never vanishes on I. Let y_1 and y_2 be two linearly independent solutions on I of the associated homogeneous equation (**) above, and let y_p be a *particular solution*¹ of the non-homogeneous equation (**‡). Then every solution y on I of (**‡) can be represented in the form

$$y = c_1 y_1 + c_2 y_2 + y_p$$

for some constants c_1 and c_2 .

IV Finding particular solutions

- (a) Method of undetermined coefficients for the case of constant coefficients See the textbook for the general case.
- (b) Method of variation of parameters for the general case

Let y_1 and y_2 be two linearly independent solutions on I of the homogeneous equation a(x)y'' + b(x)y' + c(x)y = 0 where a(x), b(x) and c(x) are continuous on some interval I, and a(x) never vanishes on I. Then by division by a(x) we can put the equation into the form

$$y'' + p(x)y' + q(x)y = g(x)$$

where p(x), q(x) and g(x) are continuous on I. The method of variation of parameters yields a particular solution to this non-homogeneous equation.

NOTE: The formulas below required that the ODE be put in the above form, where the coefficient of y'' is 1.

We assume a solution of the form $y_p = u_1(x)y_1 + u_2(x)y_2$. The formulas for u_1 and u_2 are

$$u_1 = \int \frac{-y_2 g(x)}{W(y_1, y_2)} dx \qquad \qquad u_2 = \int \frac{y_1 g(x)}{W(y_1, y_2)} dx$$

where the convention is that we choose 0 for the additive constants. Then the particular solution is given by

$$y_p = y_1 \left(\int \frac{-y_2 g(x)}{W(y_1, y_2)} dx \right) + y_2 \left(\int \frac{y_1 g(x)}{W(y_1, y_2)} dx \right)$$

¹i.e. y_p contains no arbitrary constants