{VERSION 5 0 "APPLE_PPC_MAC" "5.0" } {USTYLETAB {CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 2 2 2 0 0 0 1 }{CSTYLE "_cstyle1" -1 202 "Times" 1 12 0 0 0 1 2 1 1 2 2 2 0 0 0 1 }{CSTYLE "_cstyle2" -1 203 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "_cstyle3" -1 204 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 0 0 0 1 } {CSTYLE "_cstyle4" -1 205 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 0 0 0 1 } {CSTYLE "_cstyle5" -1 206 "Times" 1 12 0 0 0 1 2 1 1 2 2 2 0 0 0 1 } {CSTYLE "_cstyle6" -1 207 "Courier" 0 1 255 0 0 1 0 1 0 2 1 2 0 0 0 1 }{CSTYLE "_cstyle9" -1 210 "Times" 1 12 0 0 0 1 1 2 2 2 2 2 0 0 0 1 } {CSTYLE "_cstyle10" -1 211 "Times" 1 12 0 0 255 1 2 1 1 2 2 2 0 0 0 1 }{CSTYLE "_cstyle11" -1 212 "Times" 1 12 0 0 0 1 2 1 2 2 2 2 0 0 0 1 } {CSTYLE "_cstyle12" -1 213 "Times" 1 12 255 0 0 1 2 1 2 2 2 2 0 0 0 1 }{CSTYLE "_cstyle13" -1 214 "Times" 1 16 0 0 0 1 2 1 2 2 2 2 0 0 0 1 } {CSTYLE "_cstyle14" -1 215 "Times" 1 16 0 0 0 1 2 2 2 2 2 2 0 0 0 1 } {CSTYLE "_cstyle15" -1 216 "Times" 0 1 0 0 0 0 0 0 0 2 2 2 0 0 0 1 } {PSTYLE "_pstyle1" -1 200 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle2" -1 201 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle3" -1 202 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 4 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle4" -1 203 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle5" -1 204 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle6" -1 205 1 {CSTYLE "" -1 -1 "Courier" 1 12 255 0 0 1 2 1 2 2 1 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle9" -1 208 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 200 "" 0 "" {TEXT -1 0 "" }}{PARA 200 "" 0 "" {TEXT 202 7 "PROBLEM" }{TEXT 203 235 ": Solve the wave equation for t he vertical displacements of a circular membrane whose edge is rigidly fixed. Assume that the displacements are independent of the angle th eta, so that the wave equation in polar coordinates reduces to " } {TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 0 "" }}{PARA 201 "" 0 "" {TEXT 203 2 " " }{XPPEDIT 2 0 "diff(u(r,t),r,r) + (1/r)*diff(u(r,t),r ) = (1/c^2)*diff(u(r,t),t,t)" "6#/,&-%%diffG6%-%\"uG6$%\"rG%\"tGF+F+\" \"\"*(F-F-F+!\"\"-F&6$-F)6$F+F,F+F-F-*(F-F-*$%\"cG\"\"#F/-F&6%-F)6$F+F ,F,F,F-" }{TEXT 203 6 " " }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 0 "" }}{PARA 201 "" 0 "" {TEXT 203 28 "0 < r < 1 and \+ t > 0" }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 202 19 "Boundary Conditions" }{TEXT 203 0 "" }} {PARA 200 "" 0 "" {TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 85 "(1) The condition \"rigidly fixed\" at the boundary implies u(1,t) = 0 t > 0." }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 93 "(2) \+ Since r = 0 is a singular point of the PDE, we require3: u(r,t) f inite as r ---> 0+" }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 0 " " }}{PARA 200 "" 0 "" {TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 202 18 "Initial Conditions" }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 0 " " }}{PARA 200 "" 0 "" {TEXT 203 5 "(1) " }{XPPEDIT 2 0 "u(r,0) = f(r) " "6#/-%\"uG6$%\"rG\"\"!-%\"fG6#F'" }{TEXT 203 32 " , 0 < r < 1 (i nitial shape)" }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 5 "(2) \+ " }{XPPEDIT 2 0 "u[t](r,0) = g(r)" "6#/-&%\"uG6#%\"tG6$%\"rG\"\"!-%\"g G6#F*" }{TEXT 203 50 " , 0 < r < 1 (initial velocity distribution) " }{TEXT 203 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }} {PARA 203 "" 0 "" {TEXT 205 133 "We now separate variables with the as sumption u(r,t) = R(r) T(t). Substitution into the PDE followed by di vision by R(r) T(t) yields" }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 5 " " }{XPPEDIT 2 0 "((Diff (R(r), `$`(r, 2)))+(Diff(R(r), r))/r)/R = (Diff(T(t), `$`(t, 2)))/(c^2 *T(t))" "6#/*&,&-%%DiffG6$-%\"RG6#%\"rG-%\"$G6$F,\"\"#\"\"\"*&-F'6$-F* 6#F,F,F1F,!\"\"F1F1F*F7*&-F'6$-%\"TG6#%\"tG-F.6$F>F0F1*&%\"cGF0-F<6#F> F1F7" }{TEXT 205 7 " " }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 76 "By the standard argue ment both sides must be a constant, which we denote by " }{XPPEDIT 2 0 "-lambda" "6#,$%'lambdaG!\"\"" }{TEXT 205 46 ". The minus sigh was \+ inserted here to ......." }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 23 "Hence we have two \+ ODES:" }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 3 " " }{XPPEDIT 2 0 "Diff(R(r),r,r) + (1/r)*Diff(R (r),r) + lambda * R(r) = 0" "6#/,(-%%DiffG6%-%\"RG6#%\"rGF+F+\"\"\"*(F ,F,F+!\"\"-F&6$-F)6#F+F+F,F,*&%'lambdaGF,-F)6#F+F,F,\"\"!" }{TEXT 205 2 " " }{TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 3 "and" }{TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {XPPEDIT 2 0 "Diff(T(t),t,t) + lambda*c^2 *T(t) = 0" "6#/,&-%%DiffG6%-%\"TG6#%\"tGF+F+\"\"\"*(%'lambdaGF,*$%\"c G\"\"#F,-F)6#F+F,F,\"\"!" }{TEXT 205 4 " " }{TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 " " }}{PARA 203 "" 0 "" {TEXT 205 170 "Next we must recast the homogeneo us boundary and initial conditions. We will consider first the case o f non-trivial initial shape but zero initial velocity distribution." } {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 206 20 "Boundary Conditions:" }{TEXT 205 0 "" }}{PARA 200 "" 0 " " {TEXT 203 85 "(1) The condition u(1,t) = 0 t > 0 \+ ===> R(1) = 0 for t > 0" }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 87 "(2) The condition u(r,t) finite as r ---> 0+ \+ ===> R(r) finite as r ---> 0+" }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 202 19 "Initial Conditions:" }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 5 "(1) " }{XPPEDIT 2 0 "u(r,0) = f(r)" "6#/-%\"uG6$%\"rG\"\"!-%\"fG6#F'" }{TEXT 203 56 " , \+ 0 < r < 1 (initial shape) (Save for later) " }{TEXT 203 0 "" } }{PARA 200 "" 0 "" {TEXT 203 5 "(2) " }{XPPEDIT 2 0 "u[t](r, 0) = 0" "6#/-&%\"uG6#%\"tG6$%\"rG\"\"!F+" }{TEXT 203 60 " , 0 < r < 1 ( initial velocity) ===> T'(0) = 0 ." }{TEXT 203 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 37 "Hen ce our Sturm-Liouville Problem is:" }{TEXT 205 0 "" }}{PARA 204 "" 0 " " {TEXT 205 3 " " }{XPPEDIT 2 0 "Diff(R(r),r,r) + (1/r)*Diff(R(r),r) + lambda * R(r) = 0" "6#/,(-%%DiffG6%-%\"RG6#%\"rGF+F+\"\"\"*(F,F,F+! \"\"-F&6$-F)6#F+F+F,F,*&%'lambdaGF,-F)6#F+F,F,\"\"!" }{TEXT 205 0 "" } }{PARA 204 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 45 "R( 1) = 0 , R(r) finite at r ---> 0+ " }{TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 26 "while the T(t) equation is" }{TEXT 205 0 "" }}{PARA 204 "" 0 "" {XPPEDIT 2 0 "D iff(T(t),t,t) + lambda*c^2*T(t) = 0" "6#/,&-%%DiffG6%-%\"TG6#%\"tGF+F +\"\"\"*(%'lambdaGF,*$%\"cG\"\"#F,-F)6#F+F,F,\"\"!" }{TEXT 205 4 " \+ " }{TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 9 "T'(0) = 0" }{TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 " " {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 117 "The differential e quation in the SL problem is Bessel's equation of order zero, and we w ill consider the three cases " }{XPPEDIT 2 0 "lambda < 0" "6#2%'lambda G\"\"!" }{TEXT 205 3 " , " }{XPPEDIT 2 0 "lambda = 0" "6#/%'lambdaG\" \"!" }{TEXT 205 6 ", and " }{XPPEDIT 2 0 "lambda > 0" "6#2\"\"!%'lambd aG" }{TEXT 205 2 " ." }{TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 9 "Case I: " }{XPPEDIT 2 0 "lambda = - omega^2" "6#/%'lambdaG,$*$%&omegaG\"\"#!\"\"" }{TEXT 205 8 " < 0 , " }{XPPEDIT 2 0 "omega > 0" "6#2\"\"!%&omegaG" }{TEXT 205 41 " . Then the differential equation is" }{TEXT 205 0 "" }} {PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {XPPEDIT 2 0 "r*( Diff(R(r), r, r))+(Diff(R(r), r))-omega^2*r*R(r) = 0" "6#/,(*&%\"rG\" \"\"-%%DiffG6%-%\"RG6#F&F&F&F'F'-F)6$-F,6#F&F&F'*(%&omegaG\"\"#F&F'-F, 6#F&F'!\"\"\"\"!" }{TEXT 205 2 " ." }{TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 126 "This is \+ Bessel's \"modified\" equation of order zero, with the general solutio n given in terms of the modified Bessel functions " }{XPPEDIT 2 0 "I[0 ](omega*r)" "6#-&%\"IG6#\"\"!6#*&%&omegaG\"\"\"%\"rGF+" }{TEXT 205 5 " and " }{XPPEDIT 2 0 "K[0](omega*r)" "6#-&%\"KG6#\"\"!6#*&%&omegaG\"\" \"%\"rGF+" }{TEXT 205 2 " :" }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 1 " " }{XPPEDIT 2 0 "R(r) = A* I[0](omega*r) + B*K[0](omega*r)" "6#/-%\"RG6#%\"rG,&*&%\"AG\" \"\"-&%\"IG6#\"\"!6#*&%&omegaGF+F'F+F+F+*&%\"BGF+-&%\"KG6#F06#*&F3F+F' F+F+F+" }{TEXT 205 5 " " }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 100 "with the boundary co nditions R(1) = 0 and R(r) finite at r approaches zero from the posit ive side. " }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}} {SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 53 "The modified Bessel functions are denoted by BesselI(" } {XPPEDIT 2 0 "nu" "6#%#nuG" }{TEXT 205 62 ",x) (notice the capital I a t the end of the name) and BesselK(" }{XPPEDIT 2 0 "nu" "6#%#nuG" } {TEXT 205 98 ",x) , where nu denotes the \"order\" of the equation and x is the independent variable. We need on " }{XPPEDIT 2 0 "nu" "6#%# nuG" }{TEXT 205 6 " = 0 ." }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 59 "plot([BesselI (0,x),BesselK(0,x)],x=0..2,color=[red,green]);" }{MPLTEXT 1 207 0 "" } }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}{PARA 203 "" 0 "" {TEXT 205 201 "From the plot it is clear that BesselK(0,x) is unbounde d at x = 0 and hence cannot satisfy the condition that R(r) be finite \+ as r ---> 0+. Hence we must take B=0 in our solution, which now reduc es to " }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 1 " " }{XPPEDIT 2 0 "R(r) = A*I[0](omega*r)" "6# /-%\"RG6#%\"rG*&%\"AG\"\"\"-&%\"IG6#\"\"!6#*&%&omegaGF*F'F*F*" }{TEXT 205 6 " " }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 36 "The f inal condition R(1) = 0 implies" }{TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 26 "0 = A*evalf(BesselI(0,1));" }{MPLTEXT 1 207 0 "" }}}{PARA 203 "" 0 "" {TEXT 205 67 "Hence A = 0 and there are \+ no negative eigenvalues for this problem." }{TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 206 7 "Case II" }{TEXT 205 3 ": " }{XPPEDIT 2 0 "lambda = 0" "6#/%'lambdaG\"\"!" }{TEXT 205 56 " . The differential equation in this case reduces to" }{TEXT 205 0 " " }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {XPPEDIT 2 0 "r*(Diff(R(r), r, r))+(Diff(R(r), r)) = 0" "6#/,&*&%\"rG\"\"\"-%%DiffG 6%-%\"RG6#F&F&F&F'F'-F)6$-F,6#F&F&F'\"\"!" }{TEXT 205 2 " " }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 12 "Notice that " } {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{EXCHG {PARA 205 " > " 0 "" {MPLTEXT 1 207 24 "diff(r*diff(R(r),r),r) ;" }{MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}{PARA 203 " " 0 "" {TEXT 205 29 "so that the above ODE implies" }{TEXT 205 0 "" }} {PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {XPPEDIT 2 0 "Dif f(R(r), r) = A/r" "6#/-%%DiffG6$-%\"RG6#%\"rGF**&%\"AG\"\"\"F*!\"\"" } {TEXT 205 22 " for some constant " }{TEXT 210 1 "A" }{TEXT 205 0 " " }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 48 "Another integration yields the general solution:" } {TEXT 205 0 "" }}{PARA 204 "" 0 "" {XPPEDIT 2 0 "R(r) = A*ln(r) + B" "6#/-%\"RG6#%\"rG,&*&%\"AG\"\"\"-%#lnG6#F'F+F+%\"BGF+" }{TEXT 205 1 " \+ " }{TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 102 "In order for R(r) to be bounded as r--> 0+ \+ we must take A=0, so R(r) = B. But then R(1) = 0 => B = 0." }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 4 "So, " }{XPPEDIT 2 0 "lambda = 0" "6#/%'lambdaG\"\"!" }{TEXT 205 39 " is NOT an eigenvalue for this problem." }{TEXT 205 0 "" }} {PARA 203 "" 0 "" {TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 11 "Case III: " }{XPPEDIT 2 0 "lambda = omega^2" "6#/%'lambdaG*$%&omegaG\"\"#" }{TEXT 205 7 " > 0 , \+ " }{XPPEDIT 2 0 "omega > 0" "6#2\"\"!%&omegaG" }{TEXT 205 59 " : In t his case the ODE is Bessel's equation of order zero" }{TEXT 205 0 "" } }{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 4 " \+ " }{XPPEDIT 2 0 "r*Diff(R(r),r,r) + Diff(R(r),r) + omega^2*r*R(r) = 0 " "6#/,(*&%\"rG\"\"\"-%%DiffG6%-%\"RG6#F&F&F&F'F'-F)6$-F,6#F&F&F'*(%&o megaG\"\"#F&F'-F,6#F&F'F'\"\"!" }{TEXT 205 8 " " }{TEXT 205 0 " " }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 4 "The " }{TEXT 211 16 "GENERAL SOLUTION" }{TEXT 205 3 " is " }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {XPPEDIT 2 0 "R(r) = A*J[0](omega*r) + B*Y[0](omega*r)" "6#/-%\"R G6#%\"rG,&*&%\"AG\"\"\"-&%\"JG6#\"\"!6#*&%&omegaGF+F'F+F+F+*&%\"BGF+-& %\"YG6#F06#*&F3F+F'F+F+F+" }{TEXT 205 4 " " }{TEXT 205 0 "" }}} {SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 16 "and must satisfy" }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 212 24 "R(r) bounded as r --> 0+" } {TEXT 205 1 " " }{TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 0 "" }} {PARA 204 "" 0 "" {TEXT 205 3 "and" }{TEXT 205 0 "" }}{PARA 204 "" 0 " " {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 212 9 "R(1) = 0" }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 22 "Here are the plots of " }{XPPEDIT 2 0 "J[0](x)" "6#-&%\"JG6#\"\"!6#%\"xG" }{TEXT 205 5 " and " }{XPPEDIT 2 0 "Y[0](x)" "6#-&%\"YG6#\"\"!6#%\"xG" }{TEXT 205 1 ":" }{TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 71 "pl ot([BesselJ(0,x),BesselY(0,x)],x=0..5,color=[red,green],thickness=3); " }{MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}{PARA 203 "" 0 "" {TEXT 205 8 "Clearly " }{XPPEDIT 2 0 "Y[0](x) " "6#-&%\"YG6#\"\"!6#%\"xG" }{TEXT 205 61 " is unbounded as x --> 0+, \+ so we must choose the coefficient " }{TEXT 212 1 "B" }{TEXT 205 5 " of " }{XPPEDIT 2 0 "Y[0](x)" "6#-&%\"YG6#\"\"!6#%\"xG" }{TEXT 205 30 " \+ to be zero. R(r) reduces to" }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 2 " " }{XPPEDIT 2 0 "R(r ) = A*J[0](omega*r)" "6#/-%\"RG6#%\"rG*&%\"AG\"\"\"-&%\"JG6#\"\"!6#*&% &omegaGF*F'F*F*" }{TEXT 205 2 " " }{TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 71 "Applying \+ the remaining boundary condition R(1) = 0 we find the equation" } {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{EXCHG {PARA 205 " > " 0 "" {MPLTEXT 1 207 32 "BC_eqn:= A*BesselJ(0,omega) = 0;" } {MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 39 "To have a non-trivial solution we need " }{XPPEDIT 2 0 " A <> 0" "6#0%\"AG\"\"!" }{TEXT 205 40 " . So the eigenvalues will be \+ given by " }{XPPEDIT 2 0 "lambda = omega^2" "6#/%'lambdaG*$%&omegaG\" \"#" }{TEXT 205 8 " where " }{XPPEDIT 2 0 "omega" "6#%&omegaG" } {TEXT 205 31 " is a solution of the equation " }{XPPEDIT 2 0 "J[0](ome ga) = 0" "6#/-&%\"JG6#\"\"!6#%&omegaGF(" }{TEXT 205 15 ". Let's plot " }{XPPEDIT 2 0 "J[0](x)" "6#-&%\"JG6#\"\"!6#%\"xG" }{TEXT 205 24 " t o look at it's zero's." }{TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 27 "plot(Be sselJ(0,x),x=0..15);" }{MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }} {EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 31 "fsolve(BesselJ(0,x)=0,x= 8..10);" }{MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 " " 0 "" {TEXT 205 35 "In fact Maple's built in functions " }{TEXT 213 15 "BesselJZeros( )" }{TEXT 205 6 " and " }{TEXT 213 15 "BesselYZeros ( )" }{TEXT 205 26 " will do this work for us!" }{TEXT 205 0 "" }} {PARA 203 "" 0 "" {TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 18 "BesselJZeros(0,3);" }{MPLTEXT 1 207 0 "" }{MPLTEXT 1 207 10 "\nevalf(%);" }{MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 32 "Let's compute the first 10 zero:" } {TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 11 "for i t o 10" }{MPLTEXT 1 207 0 "" }{MPLTEXT 1 207 5 "\n do" }{MPLTEXT 1 207 0 "" }{MPLTEXT 1 207 38 "\n k[i]:= evalf(BesselJZeros(0,i));" } {MPLTEXT 1 207 0 "" }{MPLTEXT 1 207 6 "\n od;" }{MPLTEXT 1 207 0 "" } }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 25 "Hence, wi th eigenvalues " }{XPPEDIT 2 0 "lambda[n] = omega[n]^2" "6#/&%'lambda G6#%\"nG*$&%&omegaG6#F'\"\"#" }{TEXT 205 42 " we have the correspondin g eigenfunctions " }{XPPEDIT 2 0 "R[n](r)" "6#-&%\"RG6#%\"nG6#%\"rG" } {TEXT 205 9 " given by" }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {XPPEDIT 2 0 "R[n](r) = J[0](k[n]*r)" "6#/-& %\"RG6#%\"nG6#%\"rG-&%\"JG6#\"\"!6#*&&%\"kG6#F(\"\"\"F*F5" }{TEXT 205 2 " " }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 6 "where " } {XPPEDIT 2 0 "k[n]" "6#&%\"kG6#%\"nG" }{TEXT 205 65 " , n = 1, 2, 3, . .. is the nth positive solution of the equation " }{XPPEDIT 2 0 "J[0]( z) = 0" "6#/-&%\"JG6#\"\"!6#%\"zGF(" }{TEXT 205 52 ". The first 10 ro ots are listed above to 10 digits." }{TEXT 205 0 "" }}{PARA 203 "" 0 " " {TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 35 "The T(t) equation now take the form" }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {XPPEDIT 2 0 "(Diff(T[n](t), t, t))+k[n]^2*c^2*T[n](t) = 0" "6#/,&-%%D iffG6%-&%\"TG6#%\"nG6#%\"tGF.F.\"\"\"*(&%\"kG6#F,\"\"#%\"cGF4-&F*6#F,6 #F.F/F/\"\"!" }{TEXT 205 4 " " }{TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {XPPEDIT 2 0 "Diff(T[n](t),t)[t=0] \+ = 0" "6#/&-%%DiffG6$-&%\"TG6#%\"nG6#%\"tGF.6#/F.\"\"!F1" }{TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 46 "The general solution of the ODE is well-known:" }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 1 " " }{XPPEDIT 2 0 "T[n](t) = A* sin(k[n]*c*t) + B* cos(k[n]*c *t)" "6#/-&%\"TG6#%\"nG6#%\"tG,&*&%\"AG\"\"\"-%$sinG6#*(&%\"kG6#F(F.% \"cGF.F*F.F.F.*&%\"BGF.-%$cosG6#*(&F46#F(F.F6F.F*F.F.F." }{TEXT 205 5 " " }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 49 "Applying the derivati ve initial condition we find" }{TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 41 " Diff(A*sin(k[n]*c*t)+B*cos(k[n]*c*t),t);" } {MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 48 "E qn_1:= diff(A*sin(k[n]*c*t)+B*cos(k[n]*c*t),t);" }{MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 25 "Eqn_2:=eval(Eqn_1,t=0 )=0;" }{MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 203 "" 0 "" {TEXT 205 11 "Since each " } {XPPEDIT 2 0 "k[n] > 0" "6#2\"\"!&%\"kG6#%\"nG" }{TEXT 205 32 " and c \+ > 0 the only solution is " }{TEXT 214 5 "A = 0" }{TEXT 215 2 ". " } {TEXT 205 5 " The " }{XPPEDIT 2 0 "T[n](t)" "6#-&%\"TG6#%\"nG6#%\"tG" }{TEXT 205 21 " solution reduces to " }{TEXT 205 0 "" }}}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" } }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 204 "" 0 "" {TEXT 205 2 " " }{XPPEDIT 2 0 "T[n](t) = B[n]*cos(k[n]*c*t)" "6#/-&%\"TG6#% \"nG6#%\"tG*&&%\"BG6#F(\"\"\"-%$cosG6#*(&%\"kG6#F(F/%\"cGF/F*F/F/" } {TEXT 205 2 " " }{TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }} {PARA 203 "" 0 "" {TEXT 205 36 "Now we can reconstruct the solution " }{XPPEDIT 2 0 "u(r,t) = R(r)*T(t)" "6#/-%\"uG6$%\"rG%\"tG*&-%\"RG6#F' \"\"\"-%\"TG6#F(F-" }{TEXT 205 58 ". For each positive integer n = 1, 2, 3, ... the function" }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {XPPEDIT 2 0 "u[n](r,t) = c[n]*cos(k[n] *c*t)*BesselJ(0,k[n]*r)" "6#/-&%\"uG6#%\"nG6$%\"rG%\"tG*(&%\"cG6#F(\" \"\"-%$cosG6#*(&%\"kG6#F(F0F.F0F+F0F0-%(BesselJG6$\"\"!*&&F66#F(F0F*F0 F0" }{TEXT 205 2 " " }{TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 35 "is a SOLUTION of the \+ wave equation " }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }} {PARA 204 "" 0 "" {TEXT 205 4 " " }{XPPEDIT 2 0 "(diff(u(r, t), r, \+ r))+(diff(u(r, t), r))/r = (diff(u(r, t), t, t))/(c^2)" "6#/,&-%%diffG 6%-%\"uG6$%\"rG%\"tGF+F+\"\"\"*&-F&6$-F)6$F+F,F+F-F+!\"\"F-*&-F&6%-F)6 $F+F,F,F,F-*$%\"cG\"\"#F3" }{TEXT 205 4 " " }{TEXT 205 0 "" }}} {SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 35 "that satisfies the three conditions" }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 13 " ( 1) " }{XPPEDIT 2 0 "u[n](r,t)" "6#-&%\"uG6#%\"nG6$%\"rG%\"tG" }{TEXT 205 15 " is bounded as " }{XPPEDIT 2 0 "r -> 0" "6#f*6#%\"rG7\"6$%)ope ratorG%&arrowG6\"\"\"!F*F*F*" }{TEXT 205 3 " +." }{TEXT 205 0 "" }} {PARA 203 "" 0 "" {TEXT 205 13 " (2) " }{XPPEDIT 2 0 "u[n](1,t ) = 0" "6#/-&%\"uG6#%\"nG6$\"\"\"%\"tG\"\"!" }{TEXT 205 6 " for " } {XPPEDIT 2 0 "t >= 0" "6#1\"\"!%\"tG" }{TEXT 205 2 " ." }{TEXT 205 0 " " }}{PARA 203 "" 0 "" {TEXT 205 13 " (3) " }{XPPEDIT 2 0 "Diff (u[n](r,t),t)" "6#-%%DiffG6$-&%\"uG6#%\"nG6$%\"rG%\"tGF-" }{TEXT 205 23 " evaluated at t=0 is 0." }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 279 "The fundamental mode s of vibration lead to standing waves since the each have a single sha pe, J[0](k[n]*r), but with a variable amplitude given by the cosine fu nction. These modes and the nodes that do not move are illustrated in the worksheet and video \"CircularStandingWaves\"." }{TEXT 205 0 "" } }{PARA 203 "" 0 "" {TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 38 "To satisfy the initial shap e condition" }{TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 34 "u(r,0) \+ = f(r) , 0 < r < 1" }{TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 59 "we form a formal infi nite sum of the fundamental solutions " }{XPPEDIT 2 0 "u[n](r,t)" "6#- &%\"uG6#%\"nG6$%\"rG%\"tG" }{TEXT 205 3 " . " }{TEXT 205 0 "" }}} {SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 83 "EigenfunctionExpansion := Sum(c[n]*cos(k[n]*c*t)*Be sselJ(0, k[n]*r),n=1..infinity);" }{MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 38 "Applying the initial \+ condition we find" }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {XPPEDIT 2 0 "f(r) = Sum(c[n]*BesselJ(0,k[n]*r), n = 1..infinity)" "6#/-%\"fG6#%\"rG-%$SumG6$*&&%\"cG6#%\"nG\"\"\"-%(B esselJG6$\"\"!*&&%\"kG6#F/F0F'F0F0/F/;F0%)infinityG" }{TEXT 205 2 " \+ " }{TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 10 "This is a " }{TEXT 210 21 "Fourier-Bessel se ries" }{TEXT 205 18 " for the function " }{TEXT 210 4 "f(r)" }{TEXT 205 61 ". The general formula for the coefficients are given by the \+ " }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 2 " " }{XPPEDIT 2 0 "c[n] = (2/J[1](k[n])^2)*Int(r*f(r )*J[0](k[n]*r) , r=0..1)" "6#/&%\"cG6#%\"nG*(\"\"#\"\"\"*$-&%\"JG6#F*6 #&%\"kG6#F'F)!\"\"-%$IntG6$*(%\"rGF*-%\"fG6#F9F*-&F.6#\"\"!6#*&&F26#F' F*F9F*F*/F9;F@F*F*" }{TEXT 205 4 " " }{TEXT 205 0 "" }}{PARA 203 " " 0 "" {TEXT 205 42 "This result is discussed in lecture class." } {TEXT 205 0 "" }}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{PARA 204 "" 0 "" {TEXT 205 7 "SUMMARY" }{TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 0 "" }}{PARA 200 "" 0 "" {TEXT 203 33 "The solution of the W ave Equation" }{TEXT 203 0 "" }}{PARA 201 "" 0 "" {TEXT 203 2 " " } {XPPEDIT 2 0 "diff(u(r,t),r,r) + (1/r)*diff(u(r,t),r) = (1/c^2)*diff(u (r,t),t,t)" "6#/,&-%%diffG6%-%\"uG6$%\"rG%\"tGF+F+\"\"\"*(F-F-F+!\"\"- F&6$-F)6$F+F,F+F-F-*(F-F-*$%\"cG\"\"#F/-F&6%-F)6$F+F,F,F,F-" }{TEXT 203 6 " " }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 0 "" }} {PARA 201 "" 0 "" {TEXT 203 28 "0 < r < 1 and t > 0" }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 19 "that satisfies the " }{TEXT 202 19 "Boundary Conditions" } {TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 85 "(1) The condition \"rigidly fixed\" at the boundary imp lies u(1,t) = 0 t > 0." }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 93 "(2) Since r = 0 is a singular point of the PDE, we requ ire3: u(r,t) finite as r ---> 0+" }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 23 "and also satisfi es the " }{TEXT 202 18 "Initial Conditions" }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 5 "(1) " } {XPPEDIT 2 0 "u(r,0) = f(r)" "6#/-%\"uG6$%\"rG\"\"!-%\"fG6#F'" }{TEXT 203 32 " , 0 < r < 1 (initial shape)" }{TEXT 203 0 "" }}{PARA 200 "" 0 "" {TEXT 203 5 "(2) " }{XPPEDIT 2 0 "u[t](r, 0) = 0" "6#/-&%\"uG 6#%\"tG6$%\"rG\"\"!F+" }{TEXT 203 55 " , 0 < r < 1 (zero initial v elocity distribution) " }{TEXT 203 0 "" }}{PARA 204 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 11 "is given by" }{TEXT 205 0 " " }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 83 "EigenfunctionExpansion := Sum(c[n]*cos(k[n]*c*t)*Be sselJ(0, k[n]*r),n=1..infinity);" }{MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}{PARA 203 "" 0 "" {TEXT 205 6 "where " }{XPPEDIT 2 0 "k[n]" "6#&%\"kG6#%\"nG" }{TEXT 205 29 " \+ is the nth positive root of " }{XPPEDIT 2 0 "J[0](z)=0" "6#/-&%\"JG6# \"\"!6#%\"zGF(" }{TEXT 205 24 " , and the coefficients " }{XPPEDIT 2 0 "c[n]" "6#&%\"cG6#%\"nG" }{TEXT 205 14 " are given by " }{TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 204 "" 0 "" {TEXT 205 3 " " }{XPPEDIT 2 0 "c[n] = (2/J[1](k[n])^2)*Int(r*f(r)*J[0](k[n]* r) , r=0..1)" "6#/&%\"cG6#%\"nG*(\"\"#\"\"\"*$-&%\"JG6#F*6#&%\"kG6#F'F )!\"\"-%$IntG6$*(%\"rGF*-%\"fG6#F9F*-&F.6#\"\"!6#*&&F26#F'F*F9F*F*/F9; F@F*F*" }{TEXT 205 8 " " }{TEXT 205 0 "" }}}{SECT 0 {PARA 202 " " 0 "" {TEXT 204 0 "" }}{PARA 203 "" 0 "" {TEXT 205 81 "Let us specify an initial shape and work out the first ten terms in the series. " } {TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 48 "f:= pie cewise(0 " 0 "" {MPLTEXT 1 207 59 "plot3d([r*cos(theta),r*s in(theta),f],r=0..1,theta=0..2*Pi);" }{MPLTEXT 1 207 0 "" }{MPLTEXT 1 207 1 "\n" }}}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}} {SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 11 "for i to 10" }{MPLTEXT 1 207 0 "" }{MPLTEXT 1 207 6 "\n do" }{MPLTEXT 1 207 0 "" }{MPLTEXT 1 207 70 "\n b[i]:= (2 /BesselJ(1,k[i])^2)*int(r*f*BesselJ(0,k[i]*r),r=0..1);" }{MPLTEXT 1 207 0 "" }{MPLTEXT 1 207 7 "\n od;" }{MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}}{SECT 0 {PARA 202 "" 0 "" {TEXT 204 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 7 "c:=0.1;" }{MPLTEXT 1 207 0 "" }}}{PARA 203 "" 0 "" {TEXT 205 0 "" }}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 77 "Eigenfu nctionExpansion := Sum(b[n]*cos(k[n]*c*t)*BesselJ(0, k[n]*r),n=1..10); " }{MPLTEXT 1 207 0 "" }{MPLTEXT 1 207 78 "\nEigenfunctionExpansion := sum(b[n]*cos(k[n]*c*t)*BesselJ(0, k[n]*r),n=1..10);" }{MPLTEXT 1 207 0 "" }}}{EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 12 "with(plots):" } {MPLTEXT 1 207 0 "" }{MPLTEXT 1 207 102 "\nanimate3d([r*cos(theta),r*s in(theta),EigenfunctionExpansion],r=0..1,theta=0..2*Pi,t=0..40,frames= 40);" }{MPLTEXT 1 207 0 "" }}}{PARA 203 "" 0 "" {TEXT 205 0 "" }} {EXCHG {PARA 205 "> " 0 "" {MPLTEXT 1 207 0 "" }}}}{PARA 208 "" 0 "" {TEXT 216 0 "" }}{PARA 208 "" 0 "" {TEXT 216 0 "" }}{PARA 208 "" 0 "" {TEXT -1 0 "" }}}{MARK "0 0 0" 0 }{VIEWOPTS 1 1 0 2 1 1805 1 1 1 1 } {PAGENUMBERS 0 1 2 33 1 1 }