
Computational Mathematics: Models, Methods and Analysis

Zhilin Li

Chapter 1

Introduction

• Why is this course important (motivations)? What is the role of this class in the

problem solving process using mathematics and computers?

• Model problems and relations with course materials.

• Errors (definition and how to avoid them)

In Fig.1.1, we show a flow chart of a problem solving process. In this class, we will focus

on numerical solutions using computers.

1.1 A computer number system

We want to use computers to solve mathematical problems and we should know the number

system in a computer.

A primitive computer system is only part of a real number system. A number in a

computer system is represented by

fraction exponential

xc = ±. d1d2 · · · dn βs,

sign mantissa base

0 ≤ di ≤ β − 1, −Smax ≤ s ≤ Smax (1.1.1)

Below are some examples of such numbers

−0.111125 (binary, β = 2), −0.3142100 , −0.0314100. (1.1.2)

The choice of base number is

3

4 Z. Li

/other approach

Solution Techniques

Interpret Solution Applications

Models

 Products
Experiments

Prediction

Better Models

Real Problem Physical Laws Mathematical/physical

Approximated

Analytic/Exact

Use Computers

visualization

Figure 1.1: A flow chart of a problem solving process.

Computational Mathematics 5

β = 2 binary primitive

β = 8 octal used for transition

β = 10 decimal custom & convenient

β = 16 hexadecimal save storage

The float number is denoted by fl(x). We can see that the expression of a floating

number is not unique. To get a unique expression, it is often designed that d1 6= 0 if xc is

a non-zero number. Such a floating number is called a normalized floating number. The

number zero is expressed as 0.00 · · · 0β0. Note that one bite is used to represent the sign in

the exponential.

Often there are two number systems in a programming language for a particular com-

puter, single precision corresponding to 32 bits; and double precision for 64 bits.

In a 32 bites computer number system, we have

sign exponential fraction

1 8 23.

In a 64 bites computer number system, we have

sign exponential fraction

1 11 52.

1.1.1 Properties of a computer number system

• It is a subset of the real number system with finite number of floating numbers. For

a 32-bit system, the total numbers is roughly 2βn(Smax − Smin + 1) − 1.

• Even if x and y are in the computer number system, their operations, for example,

fl(xy), can be out of the the computer number system.

• It has the maximum and minimum numbers; and maximum and non-zero minimum

magnitude. For a 32-bit system, the largest and smallest numbers can be calculated

from the following:

the largest exponential: = 20 + 21 + · · · + 26 = 27 − 1 = 127;

the largest fraction = 0.1111 · · · 1 = 1 − 2−23;

the largest positive number = 2127(1 − 2−23) = 1.7014116 × 1038.

The smallest number is then −1.7014116 × 1038. The smallest positive number (or

6 Z. Li

smallest magnitude) is

0.000 · · · 1 × 2−127 = 2−127−23 = 7.0064923 × 10−46, (1.1.3)

while the smallest normalized magnitude is

0.100 · · · 0 × 2−127 = 2−128 = 2.9387359 × 10−39. (1.1.4)

Overflow and underflow

If a computer system encounter a number whose magnitude is larger than the largest

floating number of the computer system, it is called OVERFLOW. This often happens

when a number is divided by zero, for example, we want to compute s/a but a

is undefined, or evaluate a function outside of the definition, for example, log(−5).

Computers often returns symbol such as NAN , inf , or simply stops the running

process. This can also happen when a number is divided by a very small number.

Often an overflow indicates a bug in the coding and should be avoided.

If a computer system encounter a number whose magnitude is smaller than the small-

est positive floating number of the computer system, it is called underflow. Often,

the computer system can set this number as zero and there is no harm to the running

process.

• The numbers in a computer number system is not evenly spaces. It is more clustered

around the origin and get sparser far away.

While a computer system is only a subset of the real number system, often it is good

enough if we know how to use it. If a single precision system is not adequate, we can use

the double precision system.

1.2 Round-off errors and floating point arithmetics

Since computer number system is only a subset of a real number system, errors (called

round-off errors) are inevitable when we solver problems using computers. The question

that we need to ask is how the errors affect the final results and how to minimize the

negative impact of errors.

Input errors

When we input a number into a computer, it is likely to have some errors. For example,

the number π can be represented exact in a computer number system. Thus a floating

Computational Mathematics 7

number of expression of π denoted as fl(π) is different from π. The first question is, how

a computer system approximate π. The default is the round-off approach. Let us take

the cecimal system as an example. Let x be a real number that is in the range of the

computer number system in terms of the magnitude, and we express it as a normalized

floating number

x = 0.d1d2 · · · dndn+1 · · · × 10b, d1 6= 0. (1.2.1)

The floating number if the computer system using the round-off approach is

fl(x) =







0.d1d2 · · · dn × 10b, if dn+1 ≤ 4,

0.d1d2 · · · (dn + 1) × 10b, if dn+1 ≥ 5
(1.2.2)

1.2.1 Definition of errors

The absolue error is defined as the difference between the true value and the approxi-

mated,

absolute error = true - approximated. (1.2.3)

Thus the error for fl(x) is

absolution error of fl(x) = x − fl(x). (1.2.4)

The absolution error is often simply called the error.

Absolution error may not reflect the reality. One picks up 995 correct answers from

1000 problems certainly is better than the one that picks up 95 correct answers from 100

problems although both of the errors are 5. A more realistic error measurement is the

relative error which is defined as

relative error =
absolution error

true value
, (1.2.5)

for example, if x 6= 0, then

relative error of fl(x) =
x − fl(x)

x
. (1.2.6)

Obviously, for different x, the error x − fl(x) and the relative error are different. How

do we then characterize the round-off errors? We seek the upper bounds, or the worst case,

which should apply for all x’s.

For the round-off approach, we have

|x − fl(x)| =







0.00 · · · 0dn+1 · · · × 10b, if dn+1 ≤ 4,

0.00 · · · 0(10 − dn+1) · · · × 10b, if dn+1 ≥ 5

≤ 0.00 · · · 05 × 10b =
1

2
10b−n,

8 Z. Li

which only depends on the magnitude of x. The relative error is

|x − fl(x)|
|x| ≤

1
210b−n

|x| ≤
1
210b−n

0.1 × 10b
=

1

2
10−n+1 define

== ǫ = machine precision (1.2.7)

Note that the upper bound of the relative error for the round-off approach is independent

of x, only depends on the computer number system. This upper bound is called the machine

precision, or machine epsilon, which indicates the best accuracy that we can expect using

the computer number system.

In general we have
|x − fl(x)|

|x| ≤ 1

2
β−n+1 (1.2.8)

for any base β. For a single precision computer number system (32 bits) we have1

ǫ =
1

2
2−23+1 = 2−23 = 1.192093 × 10−7. (1.2.9)

For a 64-bits number system (double precision), we have

ǫ =
1

2
2−52+1 = 2−52 = 2.220446 × 10−16. (1.2.10)

Relative error is closely associate with the concept of the significant digits. In general,

if a relative error is of order 10−5, for example, it is likely the result has 5 significant digits.

An approximate number can be regarded as a perturbation of the true vales according

to the following theorem.

Theorem 1.1 If x ∈ R, then fl(x) = x(1 + δ), |δ| ≤ ǫ ia the relative error.

There are other ways to input a number into a computer system. Two other approaches

are rounding, and chopping, in which we have

fl(x) = 0.d1d2 · · · dn × 10b (1.2.11)

for chopping and

fl(x) = 0.d1d2 · · · (dn + 1) × 10b, (1.2.12)

for the rounding approach. The errors bounds are twice as much as the round-off approach.

1.2.2 Error analysis of computer arithmetics

The primitive computer arithmetic only include addition, subtraction, multiplication, di-

vision, and logical operations. Logic operations do not generate errors. But the basic

arithmetic operations will introduce errors. The error bounds are given in the following

theorem.
1Accoding to the definition, the ǫ ≈ 1.2 × 10−7 which is the same as Kahaner, Moler, and Nash’s book,

but it twice as larger as the result given in Demmel’s book, which we think it is wrong.

Computational Mathematics 9

Theorem 1.2 If a and b are two floating numbers in a computer number system, fl(a ◦ b)

is in the range of the computer number system, then

fl(a ◦ b) = (a ◦ b) (1 + δ) , ◦ : + − × ÷ (1.2.13)

where

|δ| = |δ(a, b)| ≤ ǫ, (1.2.14)

we also have

fl(
√

a) =
√

a (1 + δ) . (1.2.15)

Note that δ is the relative error if (a ◦ b) 6= 0 of the operations and is bounded by the

machine precision. This is because

fl(a ◦ b) − (a ◦ b) = δ(a ◦ b) absolution error

fl(a ◦ b) − (a ◦ b)

(a ◦ b)
= δ, |δ| ≤ ǫ.

We conclude that the arithmetic operations within a computer number system give the

’best’ results that we can possible get. Does it mean that we do not need to worry about

round-off errors at all? Of course not!

1.2.3 Round-off error analysis and how to avoid round-off errors

Now we assume that x and y are two real numbers. When we input them into a computer,

we will have errors. First we consider the multiplications and divisions

fl(x ◦ y)) = fl (fl(x) ◦ fl(y)) = fl (x(1 + ǫx) ◦ y(1 + ǫy)) , |ǫx| ≤ ǫ, |ǫy| ≤ ǫ,

= (x(1 + ǫx) ◦ y(1 + ǫy)) (1 + ǫx◦y), |ǫx◦y| ≤ ǫ.

Note that ǫx, ǫy, and ǫx◦y are different numbers although they have the same upper bound!

We distinguish several different cases

• Multiplication/division (◦ = × or ÷), take the multiplication as an example, we have

fl(xy)) = x(1 + ǫx)y((1 + ǫy)(1 + ǫxy) = xy
(

1 + ǫx + ǫy + ǫxy + O(ǫ2)
)

= xy(1 + δ), |δ| ≤ 3ǫ.

Often we ignore the high order term (h.o.t) since they one much smaller (for single

precision, we have 10−7 versus 10−14). Thus delta is the relative error as we mentioned

before. The error bound is understandable with the fact of 3 with two input errors

and one from the multiplication. The absolute error is −xyδ which is bounded by

3|xy|ǫ. The same bounds hold for the division too if the divisor is not zero. Thus the

errors from the multiplications/divisions are not big concerns here. But we should

avoid dividing by small numbers if possible.

10 Z. Li

• Now we consideration a subtraction ◦ (an addition can be treated as a subtraction

since a + b = a − (−b) or vise versa.). Now we have

fl(x − y)) = (x(1 + ǫx) − y((1 + ǫy)) (1 + ǫxy)

= x − y + xǫx − yǫy + (x − y)ǫxy + O(ǫ2).

The absolution error is

(x − y) − fl(x − y) = −xǫx + yǫy − (x − y)ǫxy

|(x − y) − fl(x − y)| = |x|ǫ + |y|ǫy + |x − y|ǫ

which does not seem to be too bad. But the relative error may be unbounded because

|(x − y) − fl(x − y)|
|x − y| =

∣

∣

∣

∣

xǫx − yǫy − (x − y)ǫxy

x − y

∣

∣

∣

∣

+ O(ǫ2)

≤ |xǫx − yǫy|
|x − y| + ǫ.

In general, ǫx 6= ǫx even though they are very small and have the same upper bound.

Thus the relative error can be arbitrarily large if x and y are very close! That means

the addition/subtraction can lead the loss of accuracy, or significant digits. It is

also called catastrophic cancellation as illustrate in the following example

0.31343639 − 0.31343637 = 0.00000002.

If the last two digits of the two numbers are wrong (likely in many circumstance),

then there is no significant digit left in the result. In this example, the absolute error

is till small, but the relative error is very large!

Round-off error analysis summary

• Use formulas fl(x) = x(1 + ǫ1), fl(x ◦ y) = (x ◦ y)(1 + ǫ2) etc.

• Expand and collect terms.

• Ignore high order terms.

1.2.4 An example of accuracy loss

Assume we want to solve a quadratic equation ax2 + bx + c = 0 on a computer, how do we

do it? First of all, we need to write down the algorithm mathematically before coding it.

There are at least three methods.

• Algorithm 1: x1 =
−b +

√
b2 − 4ac

2a
, x2 =

−b −
√

b2 − 4ac

2a
,

Computational Mathematics 11

• Algorithm 2: x1 =
−b +

√
b2 − 4ac

2a
, x2 =

c

x1
,

• Algorithm 3: x1 =
−b −

√
b2 − 4ac

2a
, x2 =

c

x1
.

Mathematically, there are all equivalent (thus they are all call consistent). But occasionally,

they may give very different results especially if c is very small. When we put select the

algorithm to run on computer, we should choose Algorithm 2 if b ≤ 0 and Algorithm 3 if

b ≥ 0, why? This can be done using if · · · then conditional expression using any computer

language.

Lets check with the simple case a = 1a b = 2, x2 + 2x + e = 0. When e is very small,

we have

x1 =
−2 −

√
4 − 4e

2
= −1 −

√
1 − e ≈ −2,

x2 =
−2 +

√
4 − 4e

2
= −1 +

√
1 − e =

e

−1 −
√

1 − e
≈ −0.5e.

The last equality was obtained by rationalize to the denomenator.

Below is a Matlab code to illustrate four different algorithms:

function [y1,y2,y3,y4,y5,y6,y7,y8] = quad_err(e)

y1 = (-2 + sqrt(4 - 4*e))/2; y2 = (-2 -sqrt(4 - 4*e))/2;

y3 = (-2 + sqrt(4 - 4*e))/2; y4 = e/y3;

y5 = (-2 -sqrt(4 - 4*e))/2; y6 = e/y5;

y7 = -4*e/(-2 -sqrt(4 - 4*e))/2; y8 = e/y7;

From input various e, we can see how the accuracy gets lost. In general, when we have

e = 2 × 10−k, we will lose about k significant digits.

1.2.5 How to avoid loss of accuracy?

• Use different formula, for example,

−b +
√

b2 − 4ac = − 4ac

b +
√

b2 − 4ac
if b > 0.

A good complete root finding algorithm for quadratic equations would be

if b>0

x1 = 2*c/(b + sqrt(b*b - 4*a*c));

12 Z. Li

x2 = (-b-sqrt(b*b - 4*a*c))/(2*a);

else

x1 = (-b+sqrt(b*b - 4*a*c))/(2*a);

x2 = -2*c/(b + sqrt(b*b - 4*a*c));

end

• Use Taylor expansion, for examples,

1 − cos x = 1 −
(

1 − x2

2
+

x4

4!
− · · ·

)

≈ x2

2
.

f(x + h) − f(x) = hf ′(x) + h2 f ′′(x)

2
+ h3 f ′′′(x)

3!
+ · · ·

• Another rule of thumb for summations fl(
∑n

i=1)xi. We should add those numbers

with small magnitude first to avoid ”large numbers eat small numbers”.

• Add a small quantity to prevent break downs, for example, to compute x/(x2 + y2),

it is better to use x/(x2 + y2 + ǫ), where ǫ is the machine precision.

1.3 Some basic algorithms and Matlab codes

• Sum
∑n

i=1 xi:

s=0; % initialize

for i=1:n

s = s + a(i); % A common mistake is forget the s here!

end

• Product
∏n

i=1 xi:

s=1; % initialize

for i=1:n

s = s * a(i); % A common mistake is forget the s here!

end

Example: Matrix-vector multiplication y = Ax

In Matlab, we can simply use y = A ∗ x. Or we can use the component form so that we

can easily convert the code to other computer languages. We can put the following into a

Matlab .m file, say, test Ax.m with the following contents:

Computational Mathematics 13

n=100; A=rand(n,n); x=rand(n,1); % Generate a set of data

for i=1:n;

y(i) = 0; % initialize

for j=1:n

y(i) = y(i) + A(i,j)*x(j); % Use ’;’ to compress the outputs.

end

end

We wish to develop efficient algorithms (fast, less storage, accurate, and easy to pro-

gram). Note that Matlab is case sensitive and the index of arrays should be positive integers

(can not be zero).

1.3.1 Hornet’s algorithm for computing a polynomial

Consider a polynomial pn(x) = anxn + an−1x
n−1 + · · · + a1x + a0. How do we evaluate its

value at a point x. We can store the coefficients first in an array, say, a(1), a(2), · · · a(n + 1)

since we can not use a(0) in Matlab, then we can evaluate p(x) using

p = a(1);

for i=1:n

p = p + a(i+1)*x^(i+1);

end

The total number of operations are about O(n2/2) multiplications, and n additions. How-

ever, from the following observations

p3(x) = a3x
3 + a2x

2 + a1x + a0

= x(a3x
2 + a2x + a1) + a0

= x(x(a3x + a2) + a1) + a0,

we can form the Hornet’s algorithm (pseudo-code)

p = a(n)

for i=n-1,-1,0

p = x*p + a(i)

endfor

which only requires n multiplications and additions!

