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Preface

The purpose of this book is to provide an introduction to partial differential

equations (PDE) for one or two semesters. The book is designed for undergraduate

or beginning level graduate students in mathematics, students from physics and

engineering, interdisciplinary areas, and others who need to use partial differential

equations, Fourier series, Fourier and Laplace transforms. The prerequisite is a

basic knowledge of calculus, linear algebra, and ordinary differential equations.

The textbook aims to be practical, elementary, and reasonably rigorous; the

book is concise in that it describes fundamental solution techniques for first order,

second order, linear partial differential equations for general solutions, fundamental

solutions, solution to Cauchy (initial value) problems, and boundary value problems

for different PDEs in one and two dimensions, and different coordinates systems.

For boundary value problems, solution techniques are based on the Sturm-Liouville

eigenvalue problems and series solutions. The book is accompanied with enough

well tested Maple files and some Matlab codes that are available online. The use of

Maple makes the complicated series solution simple, interactive, and visible. These

features distinguish the book from other textbooks available in the related area.

While there are many PDE textbooks around, many of them cover either too

much material or are too difficult. We propose to have a practical, elementary, and

reasonably rigorous, concise book that describes fundamental solution techniques

with the help of Maple.

This is a textbook based on materials that the authors have used in teaching

undergraduate courses on partial differential equations at North Carolina State

University (NCSU). A web-site

https://zhilin.math.ncsu.edu/PDE_Book

has been set up where updated book information including Maple and Matlab files,

solution to homework problems, and other related information. This book project

1
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2 Preface

was partially supported by NCSU Library Alt-Textbook award (2016-2017). We

would also like to thank my students for proofreading the book.
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Chapter 1

Introduction

A differential equation involves derivatives of an unknown function of one inde-

pendent variable (say u(x)), or partial derivatives of an unknown function of more

than one independent variable (say u(x, y), or u(t, x), or u(t, x, y, z) etc.). Differ-

ential equations have been used extensively to model many problems in daily life,

in fluid and solid mechanics, biology, material sciences, economics, ecology, sports

and computer sciences.1 Examples include the Laplace equation for potentials, the

Navier-Stokes equations in fluid dynamics, biharmonic equations for stresses in solid

mechanics, and the Maxwell equations in electro-magnetics.

The main part of this textbook is to learn different linear partial differen-

tial equations and some techniques to find their solutions. Solutions to differential

equations often have physical meanings such as temperature, velocity and acceler-

ation fields, concentration, populations, trajectories of moving objects, stock price

etc. With solutions of some differential equations, for an example, we can compute

the drag, lift, and resistance force of a flying airplane. We can use solutions of

differential equations to predict or compute many physical quantities and use the

information to design or control solutions for practical applications. Often, better

understanding of differential equations is essential to improve mathematical models.

Another part of this textbook is about Fourier series and analysis that have practical

applications in wave propagation, radio or television broadcasting, and fast com-

puting based on fast Fourier transforms (FFT), and in solving partial differential

equations using series solutions.

However, although differential equations have wide applications, not many

can be solved exactly in terms of elementary functions such as polynomials, log x,

ex, trigonometric functions (sinx, cosx, ...) etc., and their combinations. Even

if a differential equation can be solved analytically, considerable effort and sound

1There are other models in practice, for example, statistical models.

3
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4 Chapter 1. Introduction

mathematical theory are often needed, and the closed form of the solution may

be too messy to be useful. If the analytic solution of the differential equation

is unavailable or too difficult to obtain, or takes some complicated form that is

unhelpful to use, we may try to find an approximate solution using two different

approaches

• Semi-analytic methods. Sometimes we can use series, integral equations, per-

turbation techniques, or asymptotic methods to obtain approximate solutions

to differential equations.

• Numerical solution methods. The rapid development in modern computers

has provided another powerful tool in solving differential equations, called nu-

merical solutions of differential equations. Nowadays, many applications such

as weather forecasts, space shuttles lunches, robots, heavily depend on super

computer simulations. There are tons of books, software packages, numerical

methods, online classes for solving differential equations numerically, which

is a developing area of study and research and provides an effective way in

solving many problems that were impossible to solve before.

In this book, we mainly adopt the first approach and focus on either analytic solu-

tions or series solutions.

If a differential equation whose solution has only one independent variable,

then the differential equation is called an ordinary differential equation (ODE). We

should have seen many ODE examples before. Below are two simple examples,

dy

dx
= x;

dy

dx
= y.

The solutions to the above ODEs are y(x) = x2

2 +C and y(x) = Cex, respectively, for

arbitrary constant C, which means that if we plug the solution into the differential

equation, we will get an identity between the left and hand right hand sides of the

differential equation.

If a differential equation whose solution has more than one independent vari-

ables, then the differential equation is called a partial differential equation (PDE).

We use the partial derivative symbol ∂
∂ to represent a partial derivative with one

particular (independent) variable such as ∂u
∂x , ∂u

∂t etc. Below are some examples.

Example 1.1. Solve the following partial differential equation,

∂u

∂x
= x or

∂u

∂x
(x, t) = x. (1.1)
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Examples of PDEs 5

Sometimes, we can specify the independent variables in the PDE as in the second

expression above to avoid possible confusions.

Solution: In the above PDE, since there is only one derivative with respect

to x, we can treat the PDE as an ordinary differential equation while regarding

the second variable as a parameter (constant) to get u(x, t) = x2

2 + C(t) for any

differentiable function C(t). Now we can check that u(x, t) = x2

2 +C(t) is indeed a

solution to the PDE. To to so, first we differentiate u(x, t) with respect to x to get
∂u
∂x = x+ 0 and plug it into the PDE to have

the left hand side =
∂u

∂x
= x+ 0 = the right hand side.

Thus, we have verified that u(x, t) = x2

2 +C(t) is a solution to the PDE for arbitrary

differentiable function C(t).

Example 1.2. Check that u(x, t) = f(x−at) is a solution to the partial differential

equation,

∂u

∂t
+ a

∂u

∂x
= 0, (1.2)

where a is a constant and f(s) is an arbitrary differentiable function.

Solution: First we differentiate u(x, t) with respect to x using the chain rule

to get ∂u
∂x = f ′(x−at). Note that since f(s) is a function of one variable, we can use

the symbol f ′. Similarly, we differentiate u(x, t) with respect to t using the chain

rule to get ∂u
∂t = f ′(x − at)(−a). We plug the partial derivatives ∂u

∂x = f ′(x − at)
and ∂u

∂t = f ′(x− at)(−a) into the PDE to get

LHS =
∂u

∂t
+ a

∂u

∂t
= f ′(x− at) + f ′(x− at)(−a) = 0 = RHS.

Note that LHS and RHS stand for the left hand side and the right hand side,

respectively. Thus, we have verified that u(x, t) = f(x − at) is a solution to the

partial differential equation.

Example 1.3. Check that u(x, y) = x2 + y2 +C1x+C2y +C3 is a solution to the

partial differential equation,

∂2u

∂x2
+
∂2u

∂y2
= 4, (1.3)
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6 Chapter 1. Introduction

where, C1, C2, and C3 are constants. We should pay attention to the high order

differential notations.

Solution: First we differentiate u(x, y) with respect to x and y twice, respec-

tively to have

∂u

∂x
= 2x+ C1,

∂

∂x

∂u

∂x
=
∂2u

∂x2
= 2,

∂u

∂y
= 2y + C2,

∂

∂y

∂u

∂y
=
∂2u

∂y2
= 2.

We plug them into the PDE to get

LHS =
∂2u

∂x2
+
∂2u

∂y2
= 2 + 2 = 4 = RHS.

Thus, we have verified that u(x, y) = x2 + y2 +C1x+C2y+C3 is a solution to the

partial differential equation.

Note that for ordinary differential equations, the solution can differ by a con-

stant while for partial differential equations, the solution can differ by functions.

Some examples of ODE/PDE are listed below.

1. Initial value problems (IVP). The canonical form of a first order system is

dy

dt
= f(t,y), y(t0) = y0. (1.4)

A higher order ordinary differential equation of one variable can be rewritten

as a first order system. For example, a second order ordinary differential

equation

u′′(t) + a(t)u′(t) + b(t)u(t) = f(t),

u(0) = u0, u′(0) = v0,
(1.5)

can be converted into a first order system by setting y1(t) = u and y2(t) = u′(t)

with y1(0) = u0 and y2(0) = v0. Note that the two conditions that uniquely

determine the solution to the differential equations are all defined at t = 0, a

distinguished feature of an initial value problem.

2. Boundary value problems (BVP). Below are two examples of an ODE BVP.

The first one is one-dimensional,

u′′(x) + a(x)u′(x) + b(x)u(x) = f(x),

u(0) = u0, u(1) = u1.
(1.6)
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Note that the two conditions above are defined at different points (x = 0

and x = 1). The second example is a BVP example of a partial differential

equation (PDE) in two-dimensions,

uxx + uyy = f(x, y), (x, y) ∈ Ω,

u(x, y) = u0(x, y), (x, y) ∈ ∂Ω,
(1.7)

in a domain Ω with boundary ∂Ω, where

ux =
∂u

∂x
, uyy =

∂2u

∂y2
(1.8)

and so on for simplicity of notations if there are no confusions occur. The

above PDE is linear and classified as elliptic. There are two other classifica-

tions for linear PDE, namely, parabolic and hyperbolic, which will be briefly

discussed later in this section. The PDE above is called a two dimensional

(2D) Poisson equation. If f(x, y) = 0, it is a two dimensional Laplace equa-

tion.

3. Boundary and initial value problems, e.g.,

ut = c2uxx + f(x, t), 0 < x < 1,

u(0, t) = g1(t), u(1, t) = g2(t), BC,

u(x, 0) = u0(x), IC,

(1.9)

where BC stands for boundary condition(s) while IC for initial condition(s).

We call f(x, t) a source term. If f(x, t) = 0, the PDE is called a one di-

mensional (1D) heat equation, which is a parabolic PDE. Note that the PDE

ut = −c2uxx is called a backward heat equation. A nonzero perturbation

at some time instances will result an exponential growth in the solution as t

increases. A two dimensional heat equation has the following form

ut = c2 (uxx + uyy) . (1.10)

4. Eigenvalue problems, e.g.,

u′′(x) = λu(x),

u(0) = 0, u(1) = 0.
(1.11)

In this example, both the function u(x) (the eigenfunction) and the scalar λ

(the eigenvalue) are unknowns.
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8 Chapter 1. Introduction

5. Diffusion and reaction equations, e.g.,

∂u

∂t
= ∇ · (β∇u) + a · ∇u+ f(u) (1.12)

where a is a constant vector, ∇ is the gradient operator which is the derivative

∇u(x) = du
dx in 1D, and ∇u(x, y) = [∂u∂x ,

∂u
∂y ]T in 2D, ∇ · (β∇u) is called a

diffusion term, a ·∇u is called an advection term, and f(u) is called a reaction

term.

6. Wave equations in 1D have the following form

utt = c2uxx, (1.13)

where c > 0 is called the wave speed. The PDE is hyperbolic. 2D wave

equations have the general form

utt = c2 (uxx + uyy) . (1.14)

7. Systems of PDEs. The incompressible Navier-Stokes model is an important

nonlinear example for modeling incompressible flows:

ρ (ut + (u · ∇)u) = ∇p+ µ∆u + F,

∇ · u = 0.
(1.15)

which has three equations in 2D, and four equations in 3D.

In this book, we will consider linear PDEs mostly in one dimension (1D) or

two dimensions (2D). A 2D linear PDE has the following general form

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy

+ d(x, y)ux + e(x, y)uy + g(x, y)u(x, y) = f(x, y),
(1.16)

where the coefficients are independent of u(x, y) so the equation is linear in u and

its partial derivatives. In the example above, the solution of the 2D linear PDE is

sought in some bounded domain Ω. According to the behaviors of the solutions,

the PDE (1.16) is classified as the following three categories:

• Elliptic if b2 − ac < 0 for all (x, y) ∈ Ω,

• Parabolic if b2 − ac = 0 for all (x, y) ∈ Ω, and

• Hyperbolic if b2 − ac > 0 for all (x, y) ∈ Ω.
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1.1. Further reading 9

For some well-known PDEs, for examples, heat equations are parabolic; advection

and wave equations are hyperbolic; Laplace and Poisson equations are elliptic. Ap-

propriate solution methods typically depend on the equation class.

For a first order system

∂u

∂t
= A(x)

∂u

∂x
, (1.17)

the classification is determined from the eigenvalues of the coefficient matrix A(x).

The system if hyperbolic if all eigenvalues are real; otherwise it can be elliptic or

parabolic.

1.1 Further reading

This textbook provides an introduction to differential equations and Fourier analy-

sis. There are many textbooks on this topic. Each textbook has its own character-

istics. Some are long and comprehensive; some are more theoretical, and some are

problem solving orientated. At the Department of Mathematics, North Carolina

State University, the following textbooks have been used by different instructors

(an incomplete list).

• Partial Differential Equations with Fourier Series and Boundary Value Prob-

lems by Nakhlé H. Asmar [1].

• Applied Partial Differential Equations (Undergraduate Texts in Mathematics)

by David J. Logan, [9]

• Introduction to Applied Partial Differential Equations by John M. Davis [2].

Advanced partial differential equations can be found in [3, 6] and many others. We

would also recommend students to Schaum’s outline series for summaries, applica-

tions, solved problems, and practices, [12, 13]. Often the solutions to partial differen-

tial equations are complicated especially with series solutions. It is beneficial to use

some powerful packages such as Maple [4] or Mathematics for symbolic derivations

and visualizations, and Matlab [5] for computations and visualizations. In terms of

numerical solution techniques to PDEs, we refer the readers to [7, 8, 10, 14, 15].

1.2 Exercises

E1.1 ODE Review: Find general solutions or solutions to the following problems.
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10 Chapter 1. Introduction

(a). y′(x) + y(x) = 1.

(b). y′(x) = −y(x)
2 .

(c). y′(x) = −x2 , y(2) = 3.

(d). y′(x)− 2y(x) = sinx.

(e). y′(x) + xy(x) = x, y(0) = 0.

(f). xdy = ydx.

E1.2 The hyperbolic sine and cosine functions are defined as

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
.

(a). Check they are solutions to ODE y′′ − y = 0.

(b). Express ex and e−x in terms of hyperbolic sine and cosine functions.

(c). Find the Wronskian of W (sinhx, coshx). Can it be zero?

E1.3 Find the general solution of the following partial differential equations assum-

ing that the solution is u(x, t).

(a).
∂u

∂x
= 0.

(b).
∂u

∂t
= 0.

(c).
∂u

∂t
= f(x), where f(x) is a given function.

(d).
∂2u

∂x∂t
= 0.

E1.4 Verify that

(a). u(x, y) = x2 + y2 satisfies the Poisson equation uxx + uyy = 4.

(b). u(x, y) = log
√
x2 + y2 satisfies the 2D Laplace equation uxx + uyy = 0

if x2 + y2 6= 0. Hint: You can use Maple to verify.

E1.5 Verify that a solution to the heat equation ut = kuxx is given by u(x, t) =
1√

4πkt
e−x

2/(4kt). It is called the fundamental solution of the 1D heat equa-

tion. Hint: Maple can be used.

E1.6 Show that u(r, θ) = log r and u(r, θ) = r cos θ are both solutions to the two-

dimensional Laplace equation in the polar coordinates,

urr +
1

r
ur +

1

r2
uθθ = 0.
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Chapter 2

First order partial

differential equations

One of the simplest first order partial differential equation (PDE) may be the ad-

vection equation
∂u

∂t
+ a

∂u

∂x
= 0, or ut + aux = 0, (2.1)

where a is constant at this moment, t and x are independent variables, u(x, t) is the

dependent variable that to be solved. In most of applications, t often stands for the

time, and x stands for the space, and a is called a wave speed. The PDE is called

a one-dimensional, first order, linear, constant coefficient, and homogeneous one.

Although there are two independent variables, it is called one-dimensional (1D)

advection equation since there is only one space variable x. The PDE is classified

as a hyperbolic one, and it is also called a one-way wave equation, or a transport

equation.

2.1 Method of changing variables

There are several ways to find general solutions of an advection partial differential

equation. One of them is the method of changing variables. The idea is to change

the partial differential equation to an ordinary differential equation (ODE) so that

we can use an ODE solution method to solve the problem. A simplest way of

changing variables is the following, ξ = x− at,

η = t,
or

 x = ξ + aη,

t = η.
(2.2)

Under such a transform, we have u(x, t) = u(ξ + aη, η) denoted as U(ξ, η) = u(ξ +

aη, η). Then, we represent the original PDE in terms of the new variables using the

11
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12 Chapter 2. First order partial differential equations

chain rule to have

∂u

∂t
=
∂U

∂ξ

∂ξ

∂t
+
∂U

∂η

∂η

∂t
= −a∂U

∂ξ
+
∂U

∂η
,

∂u

∂x
=
∂U

∂ξ

∂ξ

∂x
+
∂U

∂η

∂η

∂x
=
∂U

∂ξ
+
∂U

∂η
.

Plug them into the original PDE (2.1), we get

∂U

∂η
= 0. (2.3)

Integrating both sides above with respect to η, we get U(ξ, η) = C. Note that in

an ODE, C is an arbitrary constant. But in a PDE, it can be arbitrary differential

function of ξ, denoted as f(ξ). Thus we get the solution

u(x, t) = u(ξ + aη, η) = U(ξ, η) = f(ξ) = f(x− at). (2.4)

It is straightforward to check that u(x, y) above is indeed a solution to the PDE

(2.1). It is called the general solution of the PDE since there is no condition attached

to the problem. Note that u(x, t) = f(x − at) = f(a(x/a − t)) = F (x/a − t) and

the general solutions can have different expressions that are essentially the same.

The General Solution of 1D Advection Equation ut +
aux = 0 is u(x, t) = f(x − at) for any differentiable function
f(x).

Example 2.1. The general solution to 2∂u∂t − 3∂u∂x = 0 is u(x, t) = F (x + 3
2 t) = 0

or u(x, t) = F (2x+ 3t) for any differentiable function F (x).

Remark 2.1. We require f(x) to be differentiable so that u(x, t) satisfies the

PDE at every point (x, t). Such a solution is called a classical or strong solution

of the PDE. In many applications, however, a function satisfies the PDE almost

everywhere but at a few isolated points or lines or surfaces where the solution maybe

discontinuous. Such a solution is called a weak solution.

Note that there are more than one ways of changing variables. In general, we

can use  ξ = a11x+ a12t,

η = a21x+ a22t,
(2.5)
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2.2. Solution to Cauchy problems 13

where aij ’s are parameters of a transformation matrix A = {aij} that satisfies

det(A) 6= 0. We can choose aij ’s so that the PDE in terms of the new variables is

simple, like an ODE, so that we can solve it easily. In the discussion above we have

a11 = 1, a12 = −a, a21 = 0, and a22 = 1.

2.2 Solution to Cauchy problems

A Cauchy problem is an initial value problem that is defined in the entire space

with an initial condition, that is

∂u

∂t
+ a

∂u

∂x
= 0, −∞ < x <∞, (2.6)

u(x, 0) = u0(x), (2.7)

where u0(x) is a function defined in (−∞, ∞). Since we know that the general

solution is u(x, t) = f(x − at), we have u(x, 0) = f(x) = u0(x). Thus the solution

to the Cauchy problem is

u(x, t) = u0(x− at), (2.8)

where u0(x) is called an initial condition. The solution u(x, t) = u0(x− at) means

that the solution at (x, t) is the same as the initial solution at (x − at, 0). When

a > 0, x − at < x, the solution propagates towards right without changing the

shape. That is why it is called a one-way wave equation, or advection equation.

The Solution to a Cauchy Problem of an Advection

Equation ut + aux = 0, −∞ < x <∞, u(x, 0) = g(x) is

u(x, t) = g(x− at) (2.9)

for a given differentiable function g(x).

Example 2.2. Let a = 2 and

u0(x) =

 sinx −π ≤ x ≤ π,

0 otherwise.
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14 Chapter 2. First order partial differential equations

The solution to the Cauchy problem is

u0(x, t) =

 sin(x− 2t) −π ≤ x− 2t ≤ π

0 otherwise.

In Figure 2.1, we plot the solution at t = 0 and t = 2.5, we can see that the solution

is simply shifted to the right.

-10 -5 0 5 10

x

-1

0

1

2

3

4

u
0
(x)

u
0
(x-2t)

Figure 2.1. Plot of the initial condition u0(x) and the solution u(x, t) to

the advection equation at t = 2.5 with the wave speed a = 2.

2.3 Method of characteristic for advection equations

A characteristic to a partial differential equation is a set in which the solution

to the PDE is a constant (does not change). For a first order PDE of the form

ut + p(x, t)ux = f(x, t), a characteristic is often a continuous curve (t(s), x(s)) with

a parameter of s, for example, the arc-length of the curve. Let us examine an

advection equation ut + aux = 0 first. Since along the characteristic, the solution

u(x, t) = C is a constant, we differentiate the equation on both sides with respect

to t to get

∂u

∂t
+
∂u

∂x

dx

dt
= 0.

Since u(x, t) is the solution to the PDE, we have to have dx
dt = a or x = at+C̄. Thus

we have C̄ = x − at. Since u(x, t) is a constant along the line (the characteristic),

we have

u(x, t) = u(C̄, 0) = u0(C̄) = u0(x− at), (2.10)
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2.4. Solution of advection equations of boundary value problems 15

where u0(x) is the initial condition. Often we can simply write C̄ = C. Note

that in a partial differential equation, an arbitrary constant often corresponds to

an arbitrary function, so we have C = f(x − at) = u(x, t). Once again, we get

the general solution using a different method. It is important to know that along

a curve x̄ − x = a(t̄ − t), the solution u(x, t) is a constant, which is the basis to

determine appropriate boundary conditions for boundary value problems.

2.4 Solution of advection equations of boundary

value problems

Now consider an initial and boundary value problem of an advection equation,

∂u

∂t
+ a

∂u

∂x
= 0, 0 < x < L, (2.11)

u(x, 0) = u0(x), 0 < x < L, (2.12)

for a positive constant L. We need one or two boundary conditions to make the

problem well-posed, that is, the conditions that make the solution exist and unique.

Given a point (x, t), 0 < x < L and t > 0, we can use the method of characteristic

to track back the solution to either the initial condition or the boundary condition

whichever is the first hit by the characteristic in the domain.

For example, assume that a > 0, see the left diagram in Figure 2.2 for an

illustration. The line x = at passes through the origin and divide the domain, a

strip in the first quadrant, as two parts.

Solution in the lower right triangle: In this domain, we should have one

of the following, x < at or x > at. Which one is it? Usually we can select a point

to decide. At the point x = L/2, t = 0, we have L/2 > a · 0 = 0, which means

x > at. Thus, the domain is characterized as x > at. Next, we trace back the

solution u(x, t) to the initial condition, not that the boundary condition, why? To

do so, we temporarily fix a point (x, t), and write down the characteristic line using

(x, t) and the slope a in the x-t plane, or 1/a in the t-x plane,

(X − x) = a(T − t), (2.13)

where (x, t) is a point that we want to find the solution of u(x, t), and (X,T ) is any

point on the straight line. If the line intersection the x-axis, that is, T = 0 for some

X∗ between zero and L, then the solution is determined from the initial condition.

By setting T = 0, we get X∗ = x− at. Thus we have

u(x, t) = u(X∗, 0) = u0(X∗) = u0(x− at), (2.14)
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16 Chapter 2. First order partial differential equations

which is the same as the solution to the Cauchy problem if 0 < at < x < L when

a > 0.

Solution in the strip above the right triangle part: If 0 < x < at, then

the intersection of the line (characteristic) and the x-axis is X∗ = x − at < 0 that

is out of the solution domain. The line (characteristic) also intersects the t axis at

X = 0 for some T ∗. Thus, we set X = 0 to solve for the T to get −x = a(T ∗− t), or

T ∗ = t− x/a. Thus, the solution is from a boundary condition, say g(0, t) = gl(t),

u(x, t) = u(0, T ∗) = gl(T
∗) = gl

(
t− x

a

)
. (2.15)

In summary, for a > 0, we need to prescribed a boundary condition at x = 0,

say, u(0, t) = gl(t), here gl(t) means the boundary condition at the left end.

Solution to an Advection Equation of BVP:

ut + aux = 0, a > 0, 0 < x < L,

u(x, 0) = u0(x), u(0, t) = gl(t)
(2.16)

is u(x, t) =

 u0(x− at) 0 < at < x < L, t > 0

gl

(
t− x

a

)
0 < x < min {at, L} and t > 0.

Example 2.3. Solve the boundary value problem:

2ut + 3ux = 0, 0 < x < 3,

u0(x) = sin(5πx), 0 < x < 3, u(0, t) = sin(3t).

First we suggest to write the PDE in the standard form ut + 3
2ux = 0. From the

formula above, we get the following solution to the BVP,

u(x, t) =


sin

(
5π(x− 3t

2
)

)
0 <

3t

2
< x < 3, t > 0,

sin

(
3(t− 2x

3
)

)
0 < x < min

{
3t

2
, 3

}
and t > 0.
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2.5. Boundary value problems of advection equation with a < 0 * 17

t

xL

x=at

x> at

x< at

a > 0

L x

t

0 0

a < 0

x−L=at

0<x<L+at

Figure 2.2. Diagrams of the regions where the solution of an advection

is determined either by an initial or a boundary condition. The left diagram is for

a > 0 while the right is for a < 0.

2.5 Boundary value problems of advection equation

with a < 0 *

With similar discussions, we know that the initial and boundary value problem,

∂u

∂t
+ a

∂u

∂x
= 0, 0 < x < L, (2.17)

u(x, 0) = u0(x), 0 < x < L, (2.18)

with a < 0 requires a boundary condition at x = L, say, u(L, t) = gr(t), which

needs to be specified, as illustrated in the right diagram in Figure 2.2.

The line equation x = at will be out of the solution domain, which is useless

anymore. We should use a line equation like x = at+C that can cut both the axis

t = 0 (for initial condition) and the boundary x = L. Obviously, the line equation

x = at + L passes through (L, 0) and divides the domain in the first quadrant as

two parts; in one region we have 0 < x < at + L; in the other region we have

L+ at < x < L. Once again, we can take a point (L/2, 0) to check. Since L/2 < L,

the triangle region is described by x < at+ L.

Solution in the lower left triangle: In this domain, we have 0 < x < at+L.

Next, we trace back the solution u(x, t) to the initial condition, not the boundary

condition, why? To do so, we write down the characteristic line using a point (x, t)

and the slope a in the x-t plane, or 1/a in the t-x plane,

(X − x) = a(T − t), (2.19)

where (x, t) is a point that we want to find the solution of u(x, t), (X,T ) is any
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18 Chapter 2. First order partial differential equations

point on the straight line. If the line intersection the x-axis, that is, T = 0 for some

X∗ between zero and L, then the solution is determined from the initial condition.

By setting T = 0, we get X∗ = x− at. Thus we have

u(x, t) = u(X∗, 0) = u0(X∗) = u0(x− at), (2.20)

which is the same as the solution to the Cauchy problem if 0 < x < at+ L.

Solution in the strip above the right triangle: If at + L < x < L,

the intersection of the line (characteristic) and the x-axis is X∗ = x − at > L or

X∗ > at+ L > L that is out of the solution domain. The line (characteristic) also

intersects the line X = L for some T ∗. Thus, we set X = L to solve for the T to

get L−x = a(T ∗− t), or T ∗ = t+ (L−x)/a and the solution is from the boundary

condition

u(x, t) = u

(
L, t+

L− x
a

)
= gr

(
t+

L− x
a

)
if L+ at < x < L.

In summary, the solution when a < 0 is

u0(x, t) =


u0(x− at) 0 < x < L+ at; t > 0,

gr

(
t+

L− x
a

)
max {0, L+ at} < x < L, t > 0.

(2.21)

Example 2.4. Given the boundary value problem below

∂u

∂t
− 2

∂u

∂x
= 0, 0 < x < L,

u(x, 0) = sin(x), 0 < x < L.

Assume that we know an appropriate boundary condition is t cos t, where should it

be prescribed, x = 0 or x = L? Solve the problem as well.

Solution: In this example a = −2, so the slope of characteristics is negative.

The line passing through x = 0 and t = 0 is x + 2t = 0 that is out of the solution

domain. The line passing through x = L and t = 0 with slope −2 is x + 2t = C.

Plugging in x = L and t = 0, we get C = L. The line x+2t = L divides the solution

domain in two regions. The solution in the region bounded by x = 0, t = 0, and

x+ 2t = L, 0 < x < L, can trace back to the initial condition.

In another region, the solution can be traced back to the boundary condition

at x = L. The line equation that passes through (x, t) with slope −2 can be written

as (X − x) + 2(T − t) = 0. Let the intersection of the line with x = L be (L, t∗).
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2.6. Method of characteristics for general linear first order PDEs 19

Plug them into the line equation to get (L− x) + 2(t∗ − t) = 0 and solve for t∗ to

get t∗ = t− (L−x)/2. Thus, the boundary condition should be described at x = L

as u(L, t) = t cos t. The solution is

u0(x, t) =


sin(x+ 2t) 0 < x < L+ 2t; t > 0,(
t− L− x

2

)
cos

(
t− L− x

2

)
max {0, L− 2t} < x < L, t > 0.

2.6 Method of characteristics for general linear first

order PDEs

Consider a general linear and homogeneous first order PDE

∂u

∂t
+ p(x, t)

∂u

∂x
= 0. (2.22)

Using the method of characteristics, we set dx
dt = p(x, t). If we can solve this

ODE to get x − g(t) = C. Then the general solution to the original problem is

u(x, t) = f(x− g(t)) for any differentiable function f(x).

Proof: If u(x, t) = f(x− g(t)) and dx
dt = −g′(t) = p(x, t), then we have ∂u

∂t =

f ′g′(t) = −f ′p(x, t) and ∂u
∂x = f ′. Thus we have ∂u

∂t + p(x, t)∂u∂x = f ′(−p) + pf ′ = 0.

General Solution to an Advection Equation with a Variable
Coefficient ∂u

∂t
+ p(x, t)∂u

∂x
= 0. Use one of two below.

dx

dt
= p(x, t), x =

∫
pdt+ C = f(x, t) + C =⇒ u(x, t) = G(x− f(x, t)).

or
dt

dx
=

1

p(x, t)
, t =

∫
1

p
dx+ C = r(x, t) + C =⇒ u(x, t) = G(t− r(x, t)).

Example 2.5. Find the general solution to

∂u

∂t
+ x2 ∂u

∂x
= 0.

Find also the solution to the Cauchy problem if u(x, 0) = sinx.

Solution: We set dx
dt = p(x, t) = x2 or dx

x2 = dt. We get − 1
x = t + C or

C = t+ 1
x . The general solution is u(x, t) = f(t+ 1

x ).
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20 Chapter 2. First order partial differential equations

Since we have u(x, 0) = f(−1/x) = sinx. Let y = 1/x we get f(y) = sin y.

The solution to the Cauchy problem is u(x, t) = sin 1
t+1/x = sin x

tx+1 . We verified

that the solution satisfies the PDE using the Maple.

Example 2.6. Find the general solution to

1

t2
∂u

∂t
+
∂u

∂x
= 0.

Find also the solution to the Cauchy problem if u(x, 0) = sinx.

Solution: We set dx
dt = p(x, t) = t2 or x = t3/3 + C. We get C = x − t3/3.

The general solution is u(x, t) = f(x− t3

3 ).

Since we have u(x, 0) = f(x) = sinx. The solution to the Cauchy problem is

u(x, t) = sin
(
x− t3

3

)
, which satisfies the PDE as verified by the Maple.

2.7 Solution to first order linear non-homogeneous

PDEs with constant coefficients

Using the method of changing variables, we can transform a first order linear non-

homogeneous PDEs with constant coefficients

∂u

∂t
+ a

∂u

∂x
+ bu = f(x, t) (2.23)

to an ODE. Thus we can solve the ODE to get the general solution to the PDE.

We use the same new variables ξ = x− at,

η = t,
or

 x = ξ + aη,

t = η.
(2.24)

Under such a transform, we have u(x, t) = u(ξ + aη, η). We denote U(ξ, η) =

u(ξ + aη, η). Then using the chain rule, we can get

∂u

∂t
=
∂U

∂ξ

∂ξ

∂t
+
∂U

∂η

∂η

∂t
= −a∂U

∂ξ
+
∂U

∂η
,

∂u

∂x
=
∂U

∂ξ

∂ξ

∂x
+
∂U

∂η

∂η

∂x
=
∂U

∂ξ
.

Plug them into the original PDE (2.23), we would get

∂U

∂η
+ bU = f(ξ + aη, η) = F (ξ, η). (2.25)
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2.7. Solution to first order linear non-homogeneous PDEs with constant coefficients21

The equation above is actually ordinary differential equation with respect to η

(treating ξ as a constant). If we can solve the ODE above, we can get the general

solution to the original PDE.

Example 2.7. Find the general solution to

∂u

∂t
+ 2

∂u

∂x
− u = t.

Solution: With the changing variable ξ = x− 2t, η = t, the PDE becomes

∂U

∂η
− U = η.

It is a non-homogeneous ODE and the solution can be expressed as

U = Uh + Up

in which Uh is the homogeneous solution to ∂U
∂η − U = 0 and Up is a particularly

solution to the ODE. It is easy to get Uh(ξ, η) = g(ξ)eη. From the ODE technique,

we can set

Up = Aη +B

for two constants A and B. Plug this into the ODE and matching terms on both

sides, we get A = −1, B = −1. Thus the solution in the new variables is

Uh(ξ, η) = g(ξ)eη − η − 1.

Thus, the general solution to the PDE then is

u(x, t) = g(x− 2t)et − t− 1.

Solution to First Order non-Homogeneous PDE with Con-
stant Coefficients ∂u

∂t
+ a∂u

∂x
+ bu = f(x, t).

ξ = x− at, η = t, =⇒ ∂U

∂η
+ bU = F (ξ, η), Assume the solution is

U(ξ, η), then the original solution is u(x, t) = U(x− at, t).
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22 Chapter 2. First order partial differential equations

Example 2.8. Find the general solution to

∂u

∂t
− 1

2

∂u

∂x
+ 4u = xt.

Solution: With the changing variable ξ = x+ 1
2 t, η = t, the PDE becomes

∂U

∂η
+ 4U =

(
ξ − 1

2
η

)
η.

It is a non-homogeneous ODE and the solution can be expressed as

U = Uh + Up

in which Uh is the homogeneous solution to ∂U
∂η + 4U = 0 and Up is a particularly

solution to the ODE. It is easy to get Uh(ξ, η) = g(ξ)e−4η. From the ODE technique,

we can set

Up = Aη2 +Bη + C

where A, B, and C are constants. Plug this into the ODE and matching terms on

both sides, we get A = −1/8, B = ξ
4 + 1

16 , C = − ξ
16 −

1
64 . Thus the solution in the

new variables is

Uh(ξ, η) = g(ξ)e−4η − η2

2
+

(
ξ

4
+

1

16

)
η − ξ

16
− 1

64
.

Thus the general solution to the PDE then is

u(x, t) = g

(
x+

t

2

)
e−4t − t2

2
+

(
x+ t/2

4
+

1

16

)
t− x+ t/2

16
− 1

64
.

2.8 Exercises

E2.1 Classify the following PDE as much as you can (linear, quasi-linear, or non-

linear; order; constant or variable coefficient(s); homogeneous or not; dimen-

sion(s); type: hyperbolic, elliptic, parabolic; physical meanings: heat, wave,

potential ) as much as you can. Also give physical backgrounds if you can.

(a).

Aut = B(uxx + uyy) + f(x, y), consider A 6= 0 and A = 0.

(b).

utt = B(uxx + uyy) + f(x, y)
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2.8. Exercises 23

(c).

ut + aux = Buxx + f(u).

In the expressions above, A, B, a, and µ are constants.

E2.2 Given
∂u

∂t
+
∂u

∂x
= 0.

(a). Find the general solution.

(b). Find the solution to the Cauchy problem given u(x, 0) = 2e−2x2

, −∞ <

x <∞, t > 0.

(c). Sketch of the solution at t = 3 if the initial condition u(x, 0) is given

u(x, 0) =

 1− |x| −1 ≤ x ≤ 1,

0 otherwise,

see the top plot which is called a hat function. Mark the height of the

solution at t = 3.

E2.3 Derive the general solution of the given equation

(a), 2ut + 3ux = 0; (b), aut + bux = u, a2 + b2 6= 0.

Solve the Cauchy problem with u(x, 0) = sinx, and u(x, 0) = e−x
2

.

E2.4 Solve the given partial differential equations below by the method of charac-

teristics. Check you your answer by plugging it back into the equation.

(a).

ut + sin tux = 0.

(b).

ex
2

ux + xuy = 0.

E2.5 Find the solution to the following transport equation:

∂u

∂t
+

1

2

∂u

∂x
= 0, 0 < x < 1, t > 0,

u(x, 0) = e−x, 0 < x < 1,

u(0, t) = t2, 0 < t.
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24 Chapter 2. First order partial differential equations

E2.6 Find the solution to the following transport equation * :

∂u

∂t
− 1

2

∂u

∂x
= 0, 0 < x < 1, t > 0,

u(x, 0) = e−x, 0 < x < 1,

u(1, t) = t2, 0 < t.

E2.7 Solve the following PDE with u(x, 0) = f(x).

(a). ut + aux = e2x.

(b). ut + xux = 0.

(c). ut + tux = 0.

(d). ut + 3ux = u+ xt.

E2.8 Simulate the solution (make plots or movies) using Maple or Matlab for the

advection equation ut + aux = 0 of the Cauchy problem (−∞ < x <∞) with

the following initial conditions:

(a).

u0(x) =

 cos(2x) −2π ≤ x ≤ 2π,

0 otherwise.

(b).

u0(x) =

 1− |x| −1 ≤ x ≤ 1

0 otherwise.
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Chapter 3

Solution to one

dimensional wave

equations

A one dimensional (1D) wave equation has the following form

∂2u

∂t2
= c2

∂2u

∂x2
(3.1)

where c > 0 is the wave speed in physics. The partial differential equations is

a second order, linear, constant coefficient, homogeneous one. According to the

criterion defined on page 8, the PDE is classified as hyperbolic. We first to derive

the general solution for which no constraints are imposed.

We can use the method of changing variables to simplify the PDE by setting ξ = x− ct,

η = x+ ct,
or


x =

ξ + η

2
,

t =
η − ξ

2c
.

(3.2)

Under such a transform, we have u(x, t) = u
(
ξ+η

2 , η−ξ2c

)
= U(ξ, η). Then using the

chain rule, we can get

∂u

∂t
=
∂U

∂ξ

∂ξ

∂t
+
∂U

∂η

∂η

∂t
= −c∂U

∂ξ
+ c

∂U

∂η
,

∂u

∂x
=
∂U

∂ξ

∂ξ

∂x
+
∂U

∂η

∂η

∂x
=
∂U

∂ξ
+
∂U

∂η
.

Differentiating the first expressions above with respect to t again, we get

∂2u

∂t2
= (−c)∂

2U

∂ξ2

∂ξ

∂t
+ (−c) ∂

2U

∂η∂ξ

∂η

∂t
+ c

∂2U

∂ξ∂η

∂ξ

∂t
+ c

∂2U

∂η2

∂η

∂t

= c2
∂2U

∂ξ2
− 2c2

∂2U

∂ξ∂η
+ c2

∂2U

∂η2
,

(3.3)

25
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26 Chapter 3. Solution to one dimensional wave equations

assuming both ∂2U
∂ξ∂η and ∂2U

∂η∂ξ are continuous so that they are the same. Similarly

we can derive

∂2u

∂x2
=
∂2U

∂ξ2
+ 2

∂2U

∂ξ∂η
+
∂2U

∂η2
. (3.4)

Plugging (3.3) and (3.4) into the original PDE, we obtain

4c2
∂2U

∂ξ∂η
= 0 or

∂2U

∂ξ∂η
= 0

after some manipulations and using the fact that c 6= 0. We integrate ∂2U
∂ξ∂η = 0

with respect to η to get ∂U
∂ξ = f(ξ); and integrate it with respect to ξ to further

have

U(ξ, η) =

∫
f(ξ)dξ +G(η) = F (ξ) +G(η)

since
∫
f(ξ)dξ is still a function of ξ. Finally, we substitute the new variables back

to the original ones to get the general solution

u(x, t) = u

(
ξ + η

2
,
η − ξ

2c

)
= U(ξ, η) = F (x− ct) +G(x+ ct) (3.5)

for any twice one dimensional differentiable functions F (x) and G(x).

The General Solution of 1D Wave Equation ∂2u
∂t2

= c2 ∂2u
∂x2

is

u(x, t) = F (x− ct) +G(x+ ct)

for any differentiable function F (x) and G(x).

Example 3.1. The general solution to 2∂
2u
∂t2 − 3∂

2u
∂x2 = 0 is

u(x, t) = F

(
x+

√
3

2
t

)
+G

(
x−

√
3

2
t

)

for any differentiable function F (x) and G(x).
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3.1. Solution to Cauchy problems of 1D wave equations 27

3.1 Solution to Cauchy problems of 1D wave

equations

A Cauchy problem (an initial value problem) of a one-dimensional (1D) wave equa-

tion has the following form

∂2u

∂t2
= c2

∂2u

∂x2
, −∞ < x <∞, (3.6)

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x), −∞ < x <∞, (3.7)

where f(x) and g(x) are given initial conditions. The solution to the Cauchy prob-

lem can be represented by the D’Alembert’s formula

u(x, t) =
1

2

(
f(x− at) + f(x+ ct)

)
+

1

2c

∫ x+ct

x−at
g(s)ds. (3.8)

Proof: First we check the initial conditions. We have

u(x, 0) =
1

2
(f(x) + f(x)) + 0 = f(x)

since the integration is zero if the lower and upper limits of the integration are the

same. Secondly, we differentiate the equality (3.8) with respect to t first, then let

t = 0 to get

∂u

∂t
(x, 0) =

1

2
(f ′(x)(−c) + f ′(x)c) +

1

2c
(cg(x)− g(x)(−c)) = g(x).

To prove that the function in the D’Alembert’s formula satisfies the wave equation,

we just need to find F (x) and G(x) in the general solution in terms of f(x) and

g(x). From the initial condition, we already have

u(x, 0) = F (x) +G(x) = f(x). (3.9)

Differentiating the general solution u(x, t) = F (x− ct) +G(x+ ct) with respect to

t, we get

∂u

∂t
= F ′(x− ct)(−c) +G′(x+ ct)c, (3.10)

which leads to

∂u

∂t
(x, 0) = −F ′(x)c+G′(x)c = g(x). (3.11)

We further integrate the equality above from 0 to x to get

−F (x) +G(x) =
1

c

∫ x

0

g(s)ds+ 2A, (3.12)
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28 Chapter 3. Solution to one dimensional wave equations

where A is a constant. Note that we use 2A for simplicity of derivation. Add (3.12)

and F (x) +G(x) = f(x) together we get

G(x) =
1

2
f(x) +

1

2c

∫ x

0

g(s)ds+A.

From (3.9) and the above identity, we also arrive at

F (x) = f(x)−G(x) =
1

2
f(x)− 1

2c

∫ x

0

g(s)ds−A.

Plug F (x) and G(x) above into the general solution, we get

u(x, t) = F (x− ct) +G(x+ ct) =
1

2
f(x− ct)− 1

2c

∫ x−ct

0

g(s)ds−A

+
1

2
f(x+ ct) +

1

2c

∫ x+ct

0

g(s)ds+A

=
1

2
(f(x+ ct) + f(x+ ct)) +

1

2c

∫ 0

x−ct
g(s)ds+

1

2c

∫ x+ct

0

g(s)ds

=
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ x+ct

x−ct
g(s)ds.

Solution to the Cauchy problem of a 1D Wave Equation

∂2u

∂t2
= c2∂

2u

∂x2
, −∞ < x <∞,

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x), −∞ < x <∞,

is given by the D’Alembert’s formula

u(x, t) =
1

2

(
f(x− at) + f(x+ ct)

)
+

1

2c

∫ x+ct

x−at
g(s)ds.

Example 3.2. Solve the Cauchy problem for the wave equation

∂2u

∂t2
= 4

∂2u

∂x2
, −∞ < x <∞,

u(x, 0) =

 sinx if |x| ≤ π,

0 otherwise,

∂u

∂t
(x, 0) = 0.
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3.1. Solution to Cauchy problems of 1D wave equations 29

Solution: The solution is simply

u(x, t) =
1

2
(f(x− 2t) + f(x+ 2t)) .

If t is large enough, then the non-zero regions of f(x − 2t) and f(x + 2t) do not

overlap. We see clearly a single sine wave in the domain (−π, π) propagates to

the right and left with half the magnitude, see the solution plot in Fig. 3.1 for an

illustration. In the literature f(x−ct) is called the right-going wave, while f(x+ct)

the left-going wave.

-10 -5 0 5 10

x

-1

0

1

2

3

4

u
0
(x)

u
0
(x-2t)u

0
(x+2t)

Figure 3.1. Plot of the initial condition u0(x) and a solution u(x, t) at a

later time (t = 2.5) to the 1D wave solution with the wave speed c = 2.

Example 3.3. Solve the Cauchy problem for the wave equation

∂2u

∂t2
= 2

∂2u

∂x2
, −∞ < x <∞

u(x, 0) = sinx
∂u

∂t
(x, 0) = xe−x

2

.

Solution: According to the D’Alembert’s formula, the solution is

u(x, t) =
1

2

(
sin(x−

√
2t) + sin(x+

√
2t)
)

+
1

2
√

2

∫ x+
√

2t

x−
√

2t

se−s
2

ds

=
1

2

(
sin(x−

√
2t) + sin(x+

√
2t)
)

+
1

4
√

2

(
e−(x−

√
2t)2 − e−(x+

√
2t)2
)
.
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30 Chapter 3. Solution to one dimensional wave equations

Example 3.4. Plot or sketch of the solution of the Cauchy problem for the wave

equation below for large t.

∂2u

∂t2
=
∂2u

∂x2
, −∞ < x <∞,

u(x, 0) =


2x if 0 ≤ x ≤ 1

2 ,

2(1− x) if 1
2 ≤ x ≤ 1,

0 otherwise.

∂u

∂t
(x, 0) = 0.

In Figure 3.2, we show the plot of the solution at time t = 0, t = 0.3, and t = 5.

We can see clearly how the one wave split into two with half strength towards left

(x− t)) and right (x− t)). A Matlab movie file is also available (wave piece.m and

fp.m). For this kind of problems when the initial condition is a piecewise continuous

function, it is much easy to use a computer to find and plot the solution.

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.5

1

t=0

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.5

1

t=0.3

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.5

1

x

t=3

Figure 3.2. Plot of the wave propagation at time t = 0, t = 0.3, and t = 5.

We can see clearly how the one wave split into two with half strength towards left

(x− t) and right (x− t).
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3.2. Normal modes solutions to 1D wave equations of BVPs with special initial conditions31

3.2 Normal modes solutions to 1D wave equations of

BVPs with special initial conditions

Now consider the boundary value problem of an one dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L

u(0, t) = 0, u(L, t) = 0,

u(0, t) = f(x),
∂u

∂t
(x, 0) = g(x), 0 < x < L,

(3.13)

for a positive constant L. An application is an elastic string of a length L with two

ends fixed, which corresponds to the homogeneous boundary conditions.

Figure 3.3. A diagram of an elastic string with two ends fixed. The motion

can be modeled using a 1D wave equation.

Since the motion of an elastic string is oscillatory, we would expect the solution

is of sort of trigonometric functions of two variables of x and t. We can consider

sin(αx) cos(βt), sin(αx) sin(βt), cos(αx) cos(βt), cos(αx) sin(βt), etc. The vanishing

boundary condition at x = 0 eliminates the cos(βx) option. The solution would

look like sin(αx) cos(βt), sin(αx) sin(βt). Since the solution is zero at x = L, we

should have sin(αL) = 0 which means αL = nπ for n = 1, 2, · · · . Finally the

solution should satisfy the PDE, after we differentiate sin(αx) cos(βt) twice with x

and t, we will get β = ncπ/L.

Thus, a special function

un(x, t) = sin
nπx

L
cos

nπct

L
, (3.14)

for a non-zero integer n can be one of solutions. It is obviously that un(0, t) =

u(L, t) = 0 and un(x, t) satisfies the PDE (3.13). Note that un(x, 0) = sin nπx
L and

∂u
∂t (x, 0) = 0. Thus, if f(x) = sin nπx

L and g(x) = 0, then un(x, t) is the solution to

the initial-boundary value problem (3.13). Such a solution is called a normal mode

solution to the initial-boundary value problem.
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32 Normal modes solutions to 1D wave equations

Similarly,

ūn(x, t) = sin
nπx

L
sin

nπct

L
(3.15)

also satisfies the boundary condition and the PDE. Now we have ūn(x, 0) = 0 and
∂ū
∂t (x, 0) = ncπ

L sin nπx
L . Thus, if f(x) = 0 and g(x) = ncπ

L sin nπx
L , then ūn(x, t) is a

normal mode solution to the initial-boundary value problem (3.13).

The following normal modes

sin
nπx

L
sin

nπct

L
, sin

nπx

L
cos

nπct

L
,

N∑
n=1

sin
nπx

L

(
An sin

nπct

L
+Bn cos

nπct

L

)
,

satisfy the 1D wave equation and the homogeneous bound-
ary conditions, but NOT arbitrary initial conditions.

Example 3.5. If f(x) = 1
2 sin 5πx

L and g(x) = 0, find the solution to the initial-

boundary value problem (3.13).

Solution: According to the normal mode solution, the solution is

u(x, t) =
1

2
sin

5πx

L
cos

5πct

L
.

Example 3.6. If f(x) = 0 and g(x) = 1
2 sin 5πx

L , find the solution to the initial-

boundary value problem (3.13).

Solution: According to the normal mode solution of the second type, the

solution is

u(x, t) =
L

10πc
sin

5πx

L
sin

5πct

L
.

Example 3.7. If f(x) = sin 5πx
L − 10 sin 20πx

L and g(x) = 1
2 sin 15πx

L , find the

solution to the initial-boundary value problem (3.13).
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3.3. Exercises 33

Solution: According to the normal mode solutions and the principle of super-

position, the solution is

u(x, t) = sin
5πx

L
cos

5πct

L
− 10 sin

20πx

L
cos

20πct

L
+

L

30πc
sin

15πx

L
sin

15πct

L
.

This is because the PDE is linear, homogeneous, and with homogeneous

boundary conditions.

Challenge: How about the normal modes of

ũn(x, t) = cos
nπx

L
sin

nπct

L
, ûn(x, t) = cos

nπx

L
cos

nπct

L
?

From the superposition, we know that the linear combination

uN (x, t) =

N∑
n=1

(
an sin

nπx

L
cos

nπct

L
+ bn sin

nπx

L
sin

nπct

L

)
(3.16)

is the solution to the initial-boundary value problem (3.13) with special initial

condition

uN (x, 0) = f(x) =

N∑
n=1

an sin
nπx

L
,

∂uN
∂t

(x, 0) = g(x) =

N∑
n=1

bn
L

nπc
sin

nπx

L
.

What should we do for other general f(x) and g(x)? We can use the method

of separation variablea and Fourier expansions (N → ∞) that will be discussed

later.

3.3 Exercises

E3.1 Let
∂2u

∂t2
= c2

∂2u

∂x2
. (A). Find the general solution; (B). Find the

solution to the Cauchy problem (given u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x)).

(a). c = 1/π, f(x) = sin(πx), g(x) = 0.

(b). c = 1, f(x) = sin(πx) + 3 sin(2πx), g(x) = sin(πx).
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34 Normal modes solutions to 1D wave equations

(c). Computer project. (Extra Credit) c = 1, g(x) = x,

f(x) =


2 x if 0 ≤ x ≤ 1

2 ,

2 (1-x) if 1
2 ≤ x ≤ 1,

0 otherwise.

Plot or sketch the solution at t = 0.5 and 1 for all the problems above. Make

a movie of the solution between 0 ≤ t ≤ 50.

E3.2 Let
∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L. with u(0, t) = u(L, t) = 0. Find the solution to

the initial and boundary value problem given u(x, 0) = f(x) and
∂u

∂t
(x, 0) =

g(x).

(a). f(x) = sin
2πx

L
, g(x) = 0.

(b). f(x) =
1

2
sin

πx

L
+

1

4
sin

3πx

L
+

2

5
sin

7πx

L
, g(x) = 0.

(c). f(x) = 0, g(x) =
1

4
sin

3πx

L
− 1

10
sin

6πx

L
.

(d). f(x) =
1

4
sin

3πx

L
+

1

10
sin

6πx

L
, g(x) =

1

4
sin

3πx

L
− 2

5
sin

7πx

L
.

E3.3 Assume that c = 2, L = 3, can you solve the 1D wave equation (3.13) with

the following f(x) and g(x)?

(a). f(x) = sin(6πx), g(x) = 0.

(b). f(x) = 0, g(x) = sin(3πx).

(c). f(x) = x sinx, g(x) = 0.

(d). f(x) = sin(6πx), g(x) = sin(3πx).

(e). f(x) = sin(6πx)− 7 sin(24πx), g(x) = sin(3πx).

E3.4 Given the functions below

u1(x, t) =

N∑
n=1

1

n
sin

nπx

2
sin

nπ
√

3t

2
, u2(x, t) =

N∑
n=1

1

n
sin

nπx

2
cos

nπ
√

3t

2
.

(a). Assume that u(x, 0) = u1(x, 0) and
∂u

∂t
(x, 0) = u2(x, 0), and u(0, t) =

u(2, t) = 0, find the wave equation and the solution with those initial

and boundary conditions.

(b). Use a computer software (Maple, Matlab, Mathematica etc.) to plot the

functions with n = 5, n = 50, and n = 500. What do you observe?
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Chapter 4

Orthogonal functions &

expansions, and

Sturm-Liouville theory

For one-dimensional wave equations with homogeneous boundary conditions, even

if there is only one non-zero initial condition that is an elementary function such as

u(x, 0) = f(x) = ex or f(x) =
∑N
i=0 aix

i assuming that ut(x, 0) = 0, we cannot use

a combination of normal mode solutions unless we have infinite number of terms.

In fact, we may be able to get a series solution if we can expand ex, for example,

as below

ex ∼
∞∑
n=1

bn sin
nπx

L
. (4.1)

We use the symbol ∼ to indicate that the above expansion may or may not be

identical on both sides. Is this expansion possible? When is this possible? Is this

valid in (0, L) or any interval? If the expansion is valid in (0, L), then (4.1) is called

an orthogonal functions expansion of ex in terms of
{

sin nπx
L

}
. Often we use the

pair of braces ‘{ }’ to represent a set. How do we get those orthogonal functions?

One of answers is from the Sturm-Liouville eigenvalue theory.

Here we give a glimpse of the method of separation of variables for a 1D wave

equation of a boundary value problem,

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L,

u(0, t) = 0, u(L, t) = 0,

u(0, t) = f(x),
∂u

∂t
(x, 0) = g(x), 0 < x < L.

We try a solution that has the special form u(x, t) = T (t)X(x), in which the vari-

ables are separated. To satisfy the boundary conditions, we should have X(0) = 0

35
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36 Chapter 4. Orthogonal functions & expansions, and Sturm-Liouville theory

and X(L) = 0 since T (t) cannot be zero. Thus, we have ∂2u
∂t2 = T ′′(t)X(x) and

∂2u
∂x2 = T (t)X ′′(x). Plugging them into the wave equation we get

T ′′(t)X(x) = c2T (t)X ′′(x) =⇒ T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
.

In the second expression of above, the left hand side is a function of t while the

right hand side is a function of x, which is possible only if

T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
= −λ

for some constant λ. We will see why we use the negative sign in front of λ later.

Thus, we have

X ′′(x) + λX(x) = 0, X(0) = X(L) = 0. (4.2)

This is called a Sturm-Liouville eigenvalue problem of the boundary value problem

since both λ and u(x) are unknowns. From ordinary differential equation solution

methods and theory we know that the solution is

X(x) = C1e
√
−λx + C2e

−
√
−λx.

If λ ≤ 0, then we have to have X(x) = 0 from the boundary condition. X(x) = 0 is

called a trivial solution. Note also that X(x) = 0 cannot satisfy the initial condition

unless f(x) = 0 and g(x) = 0, and thus, should be discarded. If λ > 0, then the

solution is

X(x) = C1 cos(
√
λx) + C2 sin(

√
λx).

The condition X(0) = 0 implies that C1 = 0. Thus, we get X(x) = C2 sin(
√
λx).

The condition X(L) = 0 implies that X(L) = sin(
√
λL) = 0, which leads to

√
λL = nπ, or λ =

(nπ
L

)2

, n = 1, 2, · · · ,

and Xn(x) = sin
nπx

L
.

The functions {Xn(x)} = {sin nπx
L } above satisfy the ODE and the homogeneous

boundary conditions for any natural number n, and are called the eigenfunctions

of the special Sturm-Liouville eigenvalue problem. Note that, we usually ignore

the constant C2 in the expression of {Xn(x)} because eigenfunctions can differ by

a constant. More important, those eigenfunctions are normal modes as we know.

Next, we solve for T (t) using

T ′′(t) + c2λnT (t) = 0, (4.3)
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where λn = (nπL )2 that have already been found. Therefore, the solution of T (t) is,

Tn(t) = bn cos(
√
λ ct) + b∗n sin(

√
λ ct) = bn cos

nπct

L
+ b∗n sin

nπct

L
.

We put Xn(x) and Tn(t) together to get a normal mode solution

un(x, t) = sin
nπx

L

(
bn cos

cnπt

L
+ b∗n sin

cnπt

L

)
, (4.4)

which satisfy the PDE, the boundary conditions, but not the initial conditions.

We put all the normal mode solutions together to get a series solution.

u(x, t) =

∞∑
n=0

sin
nπx

L

(
bn cos

cnπt

L
+ b∗n sin

cnπt

L

)
(4.5)

which satisfies the PDE and the boundary conditions. The coefficients of bn and b∗n
are determined from the initial conditions u(x, 0) = f(x) and ut(x, 0) = g(x). The

question is how and why we can do it. In this chapter, we will present a systematical

discussion about how to generate those normal modes and how to obtain bn and b∗n
from initial conditions.

4.1 Orthogonal functions

Orthogonal functions are similar to orthogonal basis in the Rn space in linear al-

gebra. Examples and applications include Fourier series, orthogonal polynomials,

approximation theory and methods, and many more. One of notable applications

is that we can expand functions in terms of orthogonal functions. Orthogonal func-

tions are also intensively utilized in computational mathematics as approximation

tools.

In the Rn space that is composed of all column vectors with n components,

the simplest orthogonal basis are {ei}ni=1. For example, if n = 3. we have

e1 =

 1

0

0

 , e2 =

 0

1

0

 , e3 =

 0

0

1

 ,

which satisfies

(ei, ej) = eTi ej =

 1 if i = j,

0 if i 6= j,

where eTi ej is the sum of the products of corresponding components of ei and

ej , which is the Euclidian inner product of the two vectors. For any vector a =
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38 Chapter 4. Orthogonal functions & expansions, and Sturm-Liouville theory

[a1, a2, a3]T , we have a = a1e1 +a2e2 +a3e3. If b = {bi} is a vector, then the inner

product of a and b is defined as (a, b) =
∑3
i=1 aibi.

There are other orthogonal basis in R3, for example,

ẽ1 =

 1

0

0

 , ẽ2 =

 0

− 1√
2

1√
2

 , ẽ3 =

 0
1√
2

1√
2

 ,

also form a normalized orthogonal basis since ẽi, i = 1, 2, 3, have a unit length in

the Euclidian norm. How do we express any vector in terms of {ẽi}? It is easy to

check the following expressions,

a = α1ẽ1 + α2ẽ2 + α3ẽ3, αi =
(a, ẽi)

(ẽi, ẽi)
= (a, ẽi).

Similar to the Rn space, we define a functional space which is a set of functions

that has operations. All square integrable functions in an interval (a, b) form a linear

space, called the L2(a, b) space,

L2(a, b) =

{
f(x),

∫ b

a

|f(x)|2dx <∞

}
. (4.6)

It is a linear space because if f(x) ∈ L2(a, b) and g(x) ∈ L2(a, b), then their linear

combination w(x) = αf(x) + βg(x) is also in L2(a, b) for any constant α and β. In

L2(a, b) we can define an inner product similar to that in Rn space as

(f, g) =

∫ b

a

f(x)ḡ(x)dx, (4.7)

where ḡ(x) = g(x) in the real number space and is the conjugate of g(x) is the

complex number space. For example, if f(x) = ex + i sinx, then f̄(x) = ex− i sinx,

where i =
√
−1 is the imaginary unit. We call f(x) and g(x) orthogonal (similar to

perpendicular in Euclidean geometry) in L2(a, b) if (f, g) = 0.

Example 4.1. Let f(x) = 1 and g(x) = sinx. Are the two functions are orthogonal

in (0, 2π)? We check the inner product

(f, g) =

∫ 2π

0

f(x)ḡ(x)dx =

∫ 2π

0

sinxdx = 0.

Thus, the two functions are orthogonal in the interval (0, 2π) or any interval of

length 2π, but it is not orthogonal in the interval (0, π).
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The norm of a function f(x) in L2(a, b) in terms of the L2(a, b) inner product

is defined as

‖f‖2 = ‖f‖L2 =
√

(f, f) =

√∫ b

a

|f(x)|2dx. (4.8)

Often the subscript is omitted if there is no confusion occurs, that is, ‖f‖ = ‖f‖2.

Example 4.2. Given an interval (a, b) = (0, 2π), find the L2(a, b) norm of f(x) = 1

and g(x) = cosx. According to the definition, we calculate,

‖f‖2 =

√∫ 2π

0

|f(x)|2dx =
√

2π;

‖g‖2 =

√∫ 2π

0

|g(x)|2dx =

√∫ 2π

0

cos2 x dx =
√
π.

Example 4.3. We redo the computation but with a different interval (a, b) = (0, π).

‖f‖2 =

√∫ π

0

|f(x)|2dx =
√
π;

‖g‖2 =

√∫ π

0

cos2 x dx =

√
π

2
.

Note that there are many different norms, for example,

‖f‖1 =

∫ b

a

|f(x)|dx, ‖f‖∞ = max
0≤x≤2π

|f(x)|, (4.9)

which are not associated with the L2(a, b) space. In fact, all these norms can be

put in a uniform form

‖f‖p =

(∫ b

a

|f(x)|pdx

)1/p

(4.10)

for any p > 0. It can be shown that ‖f‖∞ = lim
p→∞

‖f‖p. Note that only when

p = 2, the norm is differentiable and it is why the L2 norm has the most useful

applications.

There are more than one ways to define an inner product, so is the related

norm. An inner product is a special functional2 of two arguments that satisfies

2A function whose arguments are functions.
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40 Chapter 4. Orthogonal functions & expansions, and Sturm-Liouville theory

• (f, g) = (g, f)

• (αf + βg, h) = α(f, g) + β(g, h) for any scalars α and β.

A norm is also a functional that should satisfy

• ‖f‖ ≥ 0 and ‖f‖ = 0 if and only if f(x) = 0, or

∫ b

a

f2(x)dx = 0;

• ‖αf‖ = |α|‖f‖ for any scalar α;

• ‖f + g‖ ≤ ‖f‖+ ‖g‖ which is called the triangle inequality.

All these statements are true in the Rn space. The famous Cauchy-Schwartz in-

equality is also true in L2(a, b) space, that is

|(f, g)| ≤ ‖f‖2‖g‖2, or∣∣∣∣∣
∫ b

a

f(x)g(x)dx

∣∣∣∣∣ ≤
√∫ b

a

f(x)2dx

√∫ b

a

g(x)2dx.
(4.11)

Particularly, if we take g(x) = 1, we get∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣
2

≤ (b− a)

∫ b

a

f(x)2dx. (4.12)

An example of different inner product is a weighted inner product. Let w(x)

be a non-negative function such that w(x) ≥ 0 and
∫ b
a
w(x)dx > 0. The weighted

inner product of f(x) and g(x) is defined as

(f, g)w =

∫ b

a

f(x)g(x)w(x)dx. (4.13)

The function f(x) and g(x) are orthogonal with respect to w(x) on (a, b) if

(f, g)w =

∫ b

a

f(x)g(x)w(x)dx = 0. (4.14)

The corresponding norm is then

‖f‖w =
√

(f, f)w =

√∫ b

a

w(x)|f(x)|2dx. (4.15)

We will see an applications of weighted inner products and norms for partial differ-

ential equations in polar and spherical coordinates for which w(r) = r.

Example 4.4. Find the parameter a such that the two functions f(x) = 1+ax and

g(x) = sinx are orthogonal with respect to the weight function w(x) = x in (0, π).
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Find the L2
w(0, π) norms of f(x) and g(x). Also find the two normalized orthogonal

functions.

Solution: With some calculations or using the Maple, we get
∫ π

0
(1+ax)x sinxdx =

π(1 + a). To make the two functions orthogonal with respect to w(x) = x, we

conclude that a = −1. Next, we compute

‖f‖w =

√∫ π

0

(1− x)2 x dx =
π√
12

√
3π2 − 8π + 6,

‖g‖w =

√∫ π

0

sin2 x · x dx =
π

2
.

The two normalized orthogonal functions are

f̄(x) =

√
12

π
√

3π2 − 8π + 6
(1− x), and ḡ(x) =

2

π
sinx.

4.2 Function expansions in terms of orthogonal sets

We can represent or approximate a function f(x) in terms of a set of orthogonal

functions under some conditions.

Definition 4.1. Let f1(x), f2(x), · · · , fn(x), · · · be a set of functions in L2(a, b),

which can also be denoted as {fn(x)}∞n=1. It is called an orthogonal set if (fi, fj) =

0 as long as i 6= j for all i and j’s. The orthogonal set is called a normalized

orthogonal set if ‖fi‖ = 1 for all i’s.

Example 4.5. The following functions,

f1(x) = sinx, f2(x) = sin 2x, f3(x) = sin 3x, · · · , fn(x) = sinnx, · · · ,

or {sinnx}∞n=1 is an orthogonal set in L2(−π, π).

Proof: If m 6= n, we can verify that∫ π

−π
sinnx sinmxdx =

∫ π

−π
−1

2

(
cos(m+ n)x− cos(m− n)x

)
dx

= − 1

2

(
sin(m+ n)x

m+ n

∣∣∣∣π
−π

+
sin(m− n)x

m− n

∣∣∣∣π
−π

)
= 0.
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42 Chapter 4. Orthogonal functions & expansions, and Sturm-Liouville theory

Note that if m = n, then we have∫ π

−π
sin2 nxdx =

∫ π

−π

1− cos 2nx

2
dx = π. (4.16)

Thus, we have ‖fn‖ =
√
π. The new orthogonal set

{
f̂n(x)

}
={fn(x)/

√
π} is a

normalized orthogonal set.

Note also that the above discussions are true for any interval (a, a + 2π) of

length of 2π since sinnx, n 6= 0, is a periodic function of period 2π.

4.2.1 Approximating functions using an orthogonal set

We can expand a function f(x) using an orthogonal set of functions {fn(x)} that

has a finite or infinite number of terms literally as

f(x) ∼
N∑
n=1

anfn(x); f(x) ∼
∞∑
n=1

anfn(x). (4.17)

While we can always do this, the left and right hand sides of above may not be the

same, and that is why we use the ‘∼’ sign. To find out the coefficients {an}∞n=1, we

assume that the equal sign holds and apply the inner product of the above with a

function fm(x) to get(
f(x), fm(x)

)
=

(∑
n=1

anfn(x), fm(x)

)
=
∑
n=1

an

(
fn(x), fm(x)

)
.

Since {fn(x)}n=1 is an orthogonal set, the right hand side terms are zeros except

the m-th term, that is(
f(x), fm(x)

)
= am

(
fm(x), fm(x)

)
=⇒ am =

(
f(x), fm

)(
fm(x), fm(x)

) . (4.18)

Expansion of f(x) in terms of an orthogonal set {φi(x)}Ni=1

on an interval (a, b), where N can be ∞.

f(x) ∼
N∑
n=1

anφn(x), an =

(
f(x), φn(x)

)(
φn(x), φn(x)

) =

∫ b
a
f(x)φn(x)dx∫ b
a
φ2
n(x)dx

.

Example 4.6. Expand f(x) = x in terms of {sinnx} on (−π, π).
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We know that {sinnx} is an orthogonal set on (−π, π). The coefficient an is

an =

∫ π
−π x sinnxdx∫ π
−π sin2 nxdx

=
1

π

(
−x cosnx

n

∣∣∣π
−π

+

∫ π

−π

cosnx

n
dx

)

= − 2

π

cosnπ

n
.

The expansion then is

x ∼ 2 sinx− sin 2x+
2

3
sin 3x− · · · =

∞∑
n=1

2(−1)n−1

nπ
sinnx.

From the Fourier series theory, we know that the equality sign holds for this case

at any x in (−π, π) but not at two end points −π and π.

Example 4.7. Expand f(x) = x2 in terms of {sinnx} on (−π, π).

It is easy to check that an = 0 for all n’s. This is because we have

an =

∫ π
−π x

2 sinnxdx∫ π
−π sin2 nxdx

= 0.

The integrand is an odd function whose integral in a symmetric interval is always

0. Such an expansion is meaningless. This is because the function f(x) = x2 does

not share much properties of the orthogonal set {sinnx} on (−π, π).

We call the orthogonal set {sinnx} on (−π, π) is incomplete or a subset in the

space L2(π, π). In Figure 4.1, we show a diagram among function sets in L2(a, b).

The sets {sinnx} and {cosnx} are subsets of L2(−π, π). While {sinnx} or {cosnx}
is not complete in L2(−π, π) meaning that not all the functions in the space can

have meaningful expansions by the orthogonal sets, they are complete in some

smaller spaces if additional conditions are imposed such as some kind of boundary

conditions, even or odd functions etc.

It is easy to check that the set {cosnx}∞n=0 is also an orthogonal on (−π, π).

Note that this set includes f(x) = 1 when n = 0. We can expand f(x) = x2

in terms of {cosnx}∞n=0. But it is meaningless to expand f(x) = x in terms of

{cosnx}∞n=0. However, if we put the two orthogonal sets together to form a new set

{1, cosnx, sinnx}∞n=1, then we can show that the new set is another orthogonal set

since
∫ π
−π sinmx cosnx = 0 for any m and n. Any function f(x) in L2(−π, π) can

be expanded by the orthogonal set,

f(x) ∼ a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) , (4.19)
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Function Universe

}sin nx{

cos n x{ }

L (a,b)
2

Figure 4.1. A diagram of orthogonal function spaces in L2(a, b). If we

regard all functions as a universe because no one can count them, then L2(a, b) is a

complete subset, called a Hilbert space since an inner product is defined. L2(a, b) is

complete meaning that any Cauchy sequence will converge to a function in L2(a, b).

The orthogonal set {sinnx} and {cosnx} are subsets of L2(0, π).

where

an =
1

π

∫ π

−π
f(x) cosnxdx, n = 0, 1, · · · ;

bn =
1

π

∫ π

−π
f(x) sinnxdx, n = 1, 2, · · ·

(4.20)

This is called a Fourier series of f(x) on (−π, π). The reason to have a factor 1
2 for

a0 is that we can have a uniform formula for {an}∞n=0.

4.3 Sturm-Liouville eigenvalue problems

Sturm-Liouville (S-L) eigenvalue problems provide a way of generating orthogonal

functions that have some special properties. One example is the S-L eigenvalue

problem obtained from the method of separation of variables for one-dimensional

wave equations utt = c2uxx in the domain (0, L) with homogeneous boundary con-

ditions u(0, t) = u(L, t) = 0. The Sturm-Liouville eigenvalue problem would lead

to a set of orthogonal functions
{

sin nπx
L

}
. For any function f(x) ∈ L2(0, L) with

f(0) = 0 and f(L) = 0, we can have a meaningful expansion of f(x) in terms of the

orthogonal functions
{

sin nπx
L

}
.
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Here we discuss Sturm-Liouville problems that have the following form

(p(x)y′(x))
′
+ q(x)y(x) = f(x), a < x < b (4.21)

with boundary conditions (BC) at x = a and x = b. Take x = a for example, three

types of linear boundary conditions are often used.

(a). The solution is prescribed, that is, y(a) = α is known. It is called a Dirichlet

BC.

(b). The derivative of the solution is prescribed, that is, y′(a) = β is known. It is

called a Neumann BC. Note that the solution is unknown at x = a.

(c). The BC is prescribed as αy(a) + βy′(a) = γ with β 6= 0. It is called a Robin

or mixed BC.

We can write down a uniform form of the three boundary conditions at the two

ends as

• c1y(a) + c2y
′(a) = b1, c21 + c22 6= 0;

• d1y(b) + d2y
′(b) = b1, d2

1 + d2
2 6= 0.

The notation c21 + c22 6= 0 means that c1 and c2 cannot be both zero simultaneously.

The ordinary differential equation (ODE) is called a self-adjoint ODE. Note that

p(x)y′′(x) +w(x)y′(x) + q(x)y(x) = f(x) is not a self-adjoint ODE unless it can be

transformed to the standard form (p̄(x)y′(x))
′
+ q̄(x)y(x) = f(x).

A Sturm-Liouville problem will have a unique solution if both p(x), q(x), and

f(x) are continuous3, and p(x) ≥ p0 > 0 and q(x) ≤ 0 with suitable boundary

conditions, for example, a Dirichlet BC at one of two ends. However, here we are

more interested in problems below that have multiple solutions(
p(x)y′(x)

)′
+
(
q(x) + λr(x)

)
y(x) = 0, a < x < b,

c1y(a) + c2y
′(a) = 0, c21 + c22 6= 0,

d1y(b) + d2y
′(b) = 0, d2

1 + d2
2 6= 0,

(4.22)

with both y(x) and λ being unknowns. Such problems are called Sturm-Liouville

eigenvalue problems. Note that the ODE and the boundary conditions are all

homogeneous and r(x) is a weight function.

3These conditions can be lessened in high level mathematics.
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Apparently y(x) = 0 is a solution, called a trivial solution. We can find some

λ such that the problem has non-trivial solutions. In a Sturm-Liouville eigenvalue

problem, we want to find both an eigenvalue λ, and a corresponding eigenfunction

yλ(x) 6= 0 that satisfies both of the ODE and the boundary conditions. We call

such ((λ, yλ(x)) an eigenpair of the S-L eigenvalue problem.

Example 4.8. Solve the eigenvalue problem

y′′ + λy = 0, 0 < x < π,

y(0) = y(π) = 0.

Solution: In this example p(x) = 1, q(x) = 0, and r(x) = 1. The roots of the

characteristic polynomial of the ODE are ±
√
−λ. If λ < 0, then the solution is

y(x) = C1e
√
−λx + C2e

−
√
−λx.

Plugging the boundary conditions y(0) = y(π) = 0 into the above, we get

C1 + C2 = 0, C1e
√
−λπ + C2e

−
√
−λπ = 0.

The only solution is C1 = 0 and C2 = 0, which leads to a trivial solution y(x) = 0.

Similarly if λ = 0, then y(x) = C1 + C2x, which again leads to y(x) = 0 using the

boundary conditions.

However, if λ > 0, then the general solution is

y(x) = C1 cos
√
λx+ C2 sin

√
λx.

The boundary condition y(0) = 0 leads to C1 = 0. Thus y(x) = C2 sin
√
λx.

The second boundary condition y(π) = 0 leads to C2 sin
√
λπ = 0. When does

sin(x) = 0? We know that x = 0, or π, or 2π, or · · · , and so on, which leads to

x = nπ. Thus, we get

√
λπ = nπ −→ λ = n2, n = 1, 2, · · · .

Note that n = 0 leads to a trivial solution and should be discarded. The solutions

to the eigenvalue problem are

λn = n2, yn(x) = sinnx, n = 1, 2, · · · .

Usually, we do not include constant C2 term since eigenfunctions can differ by

constants. Note also that the eigenfunctions {sinnx} is an orthogonal set in (0, π).
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Class practice

Solve the eigenvalue problem

y′′ + λy = 0, 0 < x < 1,

y(0) = y(1) = 0.

The solution is λn = (nπ)2 and yn(x) = sinnπx, for n = 1, 2, · · · .

4.3.1 Regular and singular Sturm-Liouville eigenvalue problems

Consider again a Sturm-Liouville eigenvalue problem,(
p(x)y′(x)

)′
+
(
q(x) + λr(x)

)
y(x) = 0, a < x < b,

c1y(a) + c2y
′(a) = 0, (c1)2 + (c2)2 6= 0,

d1y(b) + d2y
′(b) = 0, (d1)2 + (d2)2 6= 0.

(4.23)

Mathematically we require

1 p(x), q(x) and r(x) are all continuous, or p, q, r ∈ C[a, b] for short.

2 p(x) ≥ p0 > 0 and r(x) ≥ 0 for a ≤ x ≤ b,

where p0 is a positive constant. Such a problem is called a regular Sturm-Liouville

problem. For a regular Sturm-Liouville eigenvalue problem, the eigenfunctions are

all continuous and bounded in (a, b). From advanced differential equations theories,

we require p(x) is continuous and non-zero in (a, b) so that the ordinary differen-

tial equation remains to be a second order ODE. If the conditions, especially, the

condition on p(x) is violated, we called the Sturm-Liouville eigenvalue problem, a

singular problem. Below are some examples:

y′′ + λy = 0, −1 < x < 1, regular;

(xy′)′ + λy = 0, −1 < x < 1, singular at x = 0;

((1− x2)y′)′ + λy = 0, −1 < x < 1, singular at x = ±1.

Sometime, we need some effort to re-write a problem to have a standard Sturm-

Liouville eigenvalue form to judge whether the problem is regular or singular.

Example 4.9. x2y′′+2xy′+λy = 0 can be written as (x2y′)′+2xy′+λy−2xy′ = 0,

which is (x2y′)′ + λy = 0. The eigenvalue problem is a regular in an interval (a, b)
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that does not contain the original, and that the zero is not one of two end points.

Otherwise it would be singular.

Example 4.10. We can divide by x2 for xy′′−y′+λxy = 0 to get 1
xy
′′− 1

x2 y
′+λy =

0 which is
(

1
xy
′)′ + λy = 0, which is a standard S-L eigenvalue problem. The

discussion in the previous example about whether the problem is regular or singular

also applies to this S-L eigenvalue problem.

Below we present an example for a different boundary condition, a Neumann

boundary condition at x = b.

Example 4.11. Solve the eigenvalue problem

y′′ + λy = 0, 0 < x < π,

y(0) = 0, y′(π) = 0.

Solution: From previous examples, we know that the solution should be

y(x) = C2 sin
√
λx. Thus the derivative is y′(x) = C2

√
λ cos

√
λx. From y′(π) = 0

we get y′(π) = cos
√
λπ = 0. Thus, the eigenvalues are

√
λπ =

(
1

2
+ n

)
π, n = 0, 1, 2, · · · , =⇒ λn =

(
1

2
+ n

)2

,

yn(x) = sin

(
1

2
+ n

)
x.

Question: Can we take n = −1, n = −2, · · · ?

The eigenfunctions
{

sin( 1
2 + n)x

}∞
n=0

form an orthogonal set that can be used

to solve the wave equations utt = c2uxx with the boundary condition u(0, t) = 0

and ∂u
∂x (π, t) = 0 on the interval (0, π).

Example 4.12. Solve the eigenvalue problem with a mixed boundary condition

(also called a Robin BC)

y′′ + λy = 0, 0 < x < 1,

y′(0) = 0, y(1) + y′(1) = 0.

Solution: From previous discussions, we know that the solution should have
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the form

y(x) = y(x) = C1 cos(
√
λx) + C2 sin(

√
λx),

y′(x) = −
√
λC1 sin(

√
λx) +

√
λC2 cos(

√
λx).

From y′(0) = 0, we conclude that C2 = 0 since
√
λ = 0 implies a trivial solution

y = 0. From the mixed boundary condition we have

C1

(
cos
√
λ−
√
λ sin

√
λ
)

= 0, or cos
√
λ−
√
λ sin

√
λ = 0, =⇒ cot

√
λ =
√
λ.
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Intersections of y(x)=x and y(x)=cot(x)

Figure 4.2. Plots of y = x and y = cotx. The intersections are the

squares of eigenvalues of λn. Note that round-off errors from the computer and the

effect of the singularities of cotx at kπ, k = 1, 2, · · · , are visible.

There is no closed form for the eigenvalues, which are zeros of a non-linear

equation. But we do know that the squares of the eigenvalues are the intersections of

the graphs of y = x and y = cotx in the half plane x > 0. There are infinite number

of intersections in the first quadrant at: α1 = 0.86 · · · , α2 = 3.43 · · · , α3 = 6.44 · · · .
The eigenvalues are λn = α2

n, and the eigenfunctions are yn(x) = cosλnx. In

Figure 4.2, we show two plots of y = x and y = cotx. The intersections are

αn =
√
λn.
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4.4 Theory and applications of Sturm-Liouville

eigenvalue problems

For a regular Sturm-Liouville eigenvalue problem,(
p(x)y′(x)

)′
+
(
q(x) + λr(x)

)
y(x) = 0, a < x < b,

c1y(a) + c2y
′(a) = 0, c21 + c22 6= 0,

d1y(b) + d2y
′(b) = 0, d2

1 + d2
2 6= 0.

(4.24)

Assume that all p(x), q(x), r(x) ∈ C(a, b) are real functions, p(x) ≥ p0 > 0, r(x) ≥
0,
∫ b
a
r(x) > 0. Then we have the following theorem.

Theorem 4.2.

1 There are infinite number of eigenvalues, which are all real numbers. We can

arrange the eigenvalues as

λ1 < λ2 < · · · < λn < · · · , lim
n→∞

λn =∞. (4.25)

Furthermore, If q(x) ≤ 0, then all the eigenvalues are positive λn > 0 for

n = 1, 2, · · · .

2 The eigenfunctions y1(x), y2(x), · · · , yn(x), · · · , form an orthogonal set with

respect to the weight function r(x) on (a, b), that is∫ b

a

ym(x)yn(x)r(x)dx = 0, if m 6= n. (4.26)

3 For any function u(x) ∈ L2
r(a, b) that satisfies the same boundary condition,

u(x) can be expanded in terms of the orthogonal set {yn(x)}∞n=1, that is,

u(x) =

∞∑
n=1

Anyn(x) with An =

∫ b

a

u(x)yn(x)r(x)dx∫ b

a

y2
n(x)r(x)dx

. (4.27)

Sketch of the proof of the orthogonality: Let yk(x) and yj(x) be two

distinct eigenfunctions corresponding to the eigenvalues of λk and λj , respectively,
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that is,

(
py′j

)′
+
(
q + λjr

)
yj = 0, (4.28)(

py′k

)′
+
(
q + λkr

)
yk = 0. (4.29)

We multiply (4.29) by yj(x) and multiply (4.28) by yk(x); and then subtract the

two to get

yk

(
py′j

)′
− yj

(
py′k

)′
+ (λj − λk)ryjyk = 0. (4.30)

Integrating above from a to b leads to

(λj − λk)

∫ b

a

ryjykdx =

∫ b

a

yk
(
(py′j)

′ − yj(py′k)′
)
dx.

Applying integration by parts to the right hand side and carrying out some manip-

ulations, we get

(λj − λk)

∫ b

a

ryjykdx = p(b)y′j(b)yk(b)− p(a)yj(b)y
′
k(b)

− p(a)y′j(a)yk(a) + p(a)yj(a)y′k(a).

From the boundary condition at x = a we have[
yj(a) y′j(a)

yk(a) y′k(a)

][
c1

c2

]
=

[
0

0

]
.

Since c21 + c22 6= 0, we must have that the determinant of the 2 x 2 coefficient matrix

must be zero, that is, y′j(a)yk(a)−yj(a)y′k(a) = 0. Since p(a) 6= 0, we conclude that

p(a)y′j(a)yk(a)− p(a)yj(a)y′k(a) = 0.

By the same derivation at x = b, we also have

p(b)y′j(b)yk(b)− p(b)yj(b)y′k(b) = 0.

Thus, we have (λj − λk)
∫ b
a
ryjykdx = 0 and since λj 6= λk, we conclude that∫ b

a
ryjykdx = 0. This completes the proof.
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4.5 Application of the S-L eigenvalue theory and

orthogonal expansions

Let us revisit the initial and boundary value problem of one-dimensional wave equa-

tions,

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L,

u(0, t) = 0, u(L, t) = 0,

u(0, t) = f(x),
∂u

∂t
(x, 0) = g(x), 0 < x < L,

for general f(x) and g(x). As discussed at the beginning of the chapter, the solution

can be expressed as a superposition of normal mode solution,

u(x, t) =

∞∑
n=0

sin
nπx

L

(
bn cos

cnπt

L
+ b∗n sin

cnπt

L

)
(4.31)

that satisfies the PDE and the boundary conditions. The coefficients of bn and b∗n
are determined from the initial conditions u(x, 0) = f(x) and ut(x, 0) = g(x). Using

the orthogonal expansion process, we have

u(x, 0) =

∞∑
n=1

bn sin
nπx

L
, =⇒ bn =

2

L

∫ L

0

f(x) sin
nπx

L
dx,

∂u

∂t
(x, 0) =

∞∑
n=0

sin
nπx

L

(
−bn

cnπ

L
sin

cnπt

L
+ b∗n

cnπ

L
cos

cnπt

L

)
,

∂u

∂t
(x, 0) =

∞∑
n=1

sin
cnπt

L
b∗n
cnπ

L
=⇒ b∗n =

2

cnπ

∫ L

0

g(x) sin
nπx

L
dx.

Thus, the coefficients bn’s are the coefficients of the orthogonal expansions of u(x, 0) =

f(x) in terms of the eigenfunctions; while the coefficients b∗n are the coefficients of

the orthogonal expansions of ut(x, 0) = g(x) in terms of the eigenfunctions differed

by some constants.

Solution to the 1D wave equation with homogeneous BCs

u(x, t) =
∞∑
n=1

sin
nπx

L

(
bn cos

cnπt

L
+ b∗n sin

cnπt

L

)
bn =

2

L

∫ L

0

f(x) sin
nπx

L
dx, b∗n =

2

cnπ

∫ L

0

g(x) sin
nπx

L
dx.
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Example 4.13. Solve the wave equation,

∂2u

∂t2
=
∂2u

∂x2
, 0 < x < 1,

u(0, t) = 0, u(1, t) = 0,

u(x, 0) =

 1 if 0 ≤ x < 1
2 ,

0 if 1
2 ≤ x ≤ 1,

∂u

∂t
(x, 0) = 0.

Solution: In this example, c = 1, L = 1, and g(x) = 0, we have b∗n = 0 and

bn = 2

∫ 1
2

0

f(x) sinnπxdx = 2

∫ 1
2

0

sinnπxdx = − 2

nπ
cosnπx

∣∣∣ 12
0

= − 2

nπ

(
cos

nπ

2
− 1
)

=
2

nπ

(
1− cos

nπ

2

)
.

The solution to the wave equation is

u(x, t) =

∞∑
n=1

2

nπ

(
1− cos

nπ

2

)
sinnπx cosnπt.

We know that the series is convergent in the interval (0, 1). In Figure 4.3, we show

several plots of the partial sums defined as

Sn(x) =

N∑
n=1

2

nπ

(
1− cos

nπ

2

)
sinnπx cosnπt. (4.32)

with N = 1, N = 5, and N = 75 at t = 0. The series approximates the function

u(x, 0) well in the interior of continuous regions when N is large enough but oscil-

lates at x = 0 as well as at the discontinuity x = 1/2, which is called the Gibb’s

phenomena. In the Maple file, one can use the animation feature to see the evolu-

tion of the solution with time t. It is interesting to observe how the discontinuity

moves.
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Figure 4.3. Plots of the series approximations (partial sums) of the initial

condition to the wave equation.

Example 4.14. Solve the 1D wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < 1,

u(0, t) = 0, u(1, t) = 0,

u(x, 0) = sinπx− 1

2
sin 2πx+

1

3
sin 3πx,

∂u

∂t
(x, 0) = 0.

Solution: For this example, the initial conditions u(x, 0) = f(x) and ut(x, 0) =

g(x) are some normal modes and in the expansion forms already. Thus, the solution

is a combination of normal mode solutions,

u(x, t) = sinπx cosπct− 1

2
sin 2πx cos 2πct+

1

3
sin 3πx cos 3πct.
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4.6 Series solution of 1D heat equations of initial

and boundary value problems

We use the method of separation of variables to solve,

∂u

∂t
= c2

∂2u

∂x2
, 0 < x < L,

u(0, t) = 0, u(L, t) = 0,

u(0, t) = f(x), 0 < x < L,

for a general f(x) ∈ L2(0, L). The PDE is called a one-dimensional heat equation.

Note that there is only one initial condition. From the initial and boundary con-

ditions, we should have f(0) = u(0, 0) = 0 and f(L) = u(L, 0) = 0. If these two

conditions are satisfied, we call the initial and boundary conditions are consistent,

which is not always true in some applications. The method of separation of variables

includes the following steps.

Step 1: Let u(x, t) = T (t)X(x) and we plug its partial derivatives into the

original PDE so that we can separate variables. The homogeneous boundary con-

ditions require X(0) = X(L) = 0. Differentiating with u(x, t) = T (t)X(x) with t

and x respectively, we get

∂u

∂t
= T ′(t)X(x);

∂u

∂x
= T (t)X ′(x),

∂2u

∂x2
= T (t)X ′′(x).

The 1D heat equation can be re-written as

T ′(t)X(x) = c2T (t)X ′′(x) =⇒ T ′(t)

c2T (t)
=
X ′′(x)

X(x)
= −λ, (4.33)

where λ is a constant for given x and t. This is because in the last equality, the

left hand side is a function of t while the right hand side is a function of x, which

is possible only both of them are a constant independent of t and x. We need

to decide which is an eigenvalue problem that we can solve. Since we know the

boundary condition for X(x), naturally we should solve

X ′′(x)

X(x)
= −λ or X ′′(x) + λX(x) = 0, X(0) = X(L) = 0 (4.34)

first.

Step 2: Solve the eigenvalue problem. From the Sturm-Liouville eigenvalue

theory, we know that λ > 0. Thus, the solution is

X ′′(x) = C1 cos
√
λx+ C2 sin

√
λx.
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From the boundary condition X(0) = 0, we get C1 = 0. From the boundary

condition X(L) = 0, we have

C2 sin
√
λL = 0, =⇒

√
λL = nπ, n = 1, 2, · · · ,

since C2 6= 0 for non-trivial solutions. The eigenvalues and their corresponding

eigenfunctions are

λn =
(nπ
L

)2

, Xn(x) = sin
nπx

L
, n = 1, 2, · · · .

Next, we solve for T (t) using

T ′(t) + c2λnT (t) = 0, (4.35)

with known λn =
(
nπ
L

)2
. The solution is (not an eigenvalue problem anymore since

we have already known λn)

Tn(t) = bne
−c2λnt = bne

−c2(nπL )2t.

Put Xn(x) and Tn(t) together, we get a normal mode solution

un(x, t) = bne
−c2(nπL )2t sin

nπx

L
, (4.36)

which satisfy the PDE, the boundary conditions, but not the initial condition.

Step 3: Put all the normal mode solutions together to get the series solution.

The coefficients are obtained from the orthogonal expansion of the initial condition.

The solution to the 1D heat equation can be written as

u(x, t) =

∞∑
n=1

bn sin
nπx

L
e−c

2(nπL )2t (4.37)

which satisfies the PDE and the boundary conditions. The coefficients of bn are

determined from the initial conditions u(x, 0),

u(x, 0) =

∞∑
n=0

bn sin
nπx

L
, =⇒ bn =

2

L

∫ L

0

f(x) sin
nπx

L
dx.

Series solution to the 1D heat equation is

u(x, t) =
∞∑
n=1

bn sin
nπx

L
e−c

2(nπ
L

)2t, bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx.
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Example 4.15. Solve the 1D heat equation with homogeneous boundary conditions

in the interval (0, π) and the initial condition u(x, 0) = 100. What is the limit of

lim
t→∞

u(x, t)?

Solution: We use the formula above to find the coefficients of the series

bn =
2

π

∫ π

0

100 sin(nx)dx =
200

nπ
cos(nx)

∣∣∣∣π
0

=
200(1− cos(nπ)

nπ
.

Thus, the solution is

u(x, t) =

∞∑
n=1

200 (1− cos(nπ))

nπ
sin(nx)e−n

2t.

Furthermore, we can easily show that lim
t→∞

u(x, t) = 0.

In Figure 4.4, we show plots of several partial sums of the initial condition

with N = 1, N = 5, and N = 175. In the middle, the series approximate the

function very well when N is large enough but oscillates at two end points, which

is called the Gibb’s phenomena. However, for heat equations, the oscillations will

soon be dampened and the solution becomes smooth with the time. In the Maple

file, one can use the animation feature to see the evolution of the solution.
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Figure 4.4. Plots of the series approximations to the initial condition

u0(x, 0) = 100.

4.7 Exercises

E4.1 Find all values of b such that the following two functions are orthogonal

functions with respect to the weight function w(x) = e−x on the interval

0 < x < π,

f1(x) = cos(bx), f2(x) = ex.

E4.2 Given

{
cos

nπx

p

}N
n=0

=

{
1, cos

πx

p
, cos

2πx

p
, · · · , cos

iπx

p
, · · · , cos

Nπx

p

}
.

(a). Show that the set forms an orthogonal set in (−p, p). Hint: cosα cosβ =
1

2
(cos(α+ β) + cos(α− β)).
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(b). Find the L2 norm ‖f‖L2 =
√∫ p
−p f

2(x)dx of f(x) = 1 (n = 0) and

f(x) = cos
nπx

p
(other n).

(c). Find the orthogonal expansion of f(x) = |x| in terms of the orthogonal

set in (−p, p).

Hint:

∫
x cos axdx =

x sin ax

a
+

cos ax

a2
.

E4.3 Determine the constants a and b so that the functions 1, x, and a + bx + x2

are orthogonal on (−1, 1). Find the orthogonal function expansion of sinx or

cosx (choose one), for example,

sinx ∼ α1 + α2x+ α3(a+ bx+ x2)

after you have found a and b. Plot the function sinx and the approximation

together.

E4.4 Let {φn(x)}∞n=1 be a set of orthogonal functions with respect to a weight

function w(x) in an interval (a, b).

(a). What does this mean?

(b). If f(x) =

∞∑
n=1

anφn(x), then find the integral formula for an in terms of

the appropriate functions.

E4.5 Find all the eigenvalues and eigenfunctions of the S-L. problem. Show all the

cases and process.

y′′ + λy = 0, 0 < x < π/2;

y(0) = 0, y′(π/2) = 0

Also answer the following questions:

(a). Can the eigenvalues of regular S-L be complex numbers?

(b). Are there finite or infinite number of distinct eigenvalues?

(c). If ym(x) and yn(x) are two eigenfunctions corresponding to two different

eigenvalues λm and λn, what is the result of
∫ π/2

0
ym(x)yn(x)dx?

E4.6 Expand f(x) = x2 in terms of orthogonal set {cosnπx}∞n=0, {sinnπx}∞n=1,

and {1, cosnπx, sinnπx}∞n=1 in the interval (−1, 1). Thus, there are three

expansions. Can we expand the function in the interval (−π, π) in terms of

those functions? Why?
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60 Chapter 4. Orthogonal functions & expansions, and Sturm-Liouville theory

E4.7 Check whether the following Sturm-Liouville eigenvalue problems are regular

or singular; and whether the eigenvalues are positive or not. If the problem is

singular, where is the singularity?

(a). ((1 + x2)y′)′ + λy = 0, y(0) = 0, y(3) = 0.

(b). xy′′ + y′ + λy = 0, y(a) = 0, y(b) = 0, 0 ≤ a < b.

(c). xy′′ + 2y′ + λy = 0, y(1) = 0, y′(2) = 0. Hint: Multiply by x.

(d). xy′′ − y′ + λxy = 0, y(0) = 0, y′(5) = 0. Hint: Divide by x2.

(e). ((1− x2)y′)′ − 2xy′ + (1 + λx)y = 0, y(−1) = 0, y(1) = 0.

Hint: First you need to re-write the problems as the standard Sturm-Liouville

eigenvalue problems if possible.

E4.8 Find out the eigenvalues and eigenfunctions of the Sturm-Liouville eigenvalue

problem. It is encouraged to use computers to plot first three eigenfunctions.

(a). y′′ + λy = 0, y(0) = 0, y(4π) = 0.

(b). y′′ + λy = 0, y(0) = 0, y(π/4) = 0.

(c). y′′ + λy = 0, y′(0) = 0, y(4π) = 0.

(d). y′′ + λy = 0, y(0) = 0, y′(4π) = 0.

(e). y′′ + λy = 0, y(0) + y′(0) = 0, y(4π) = 0.

(f). y′′ + λy = 0, y(0) = 0, y(4π) + y′(4π) = 0.

E4.9 Find out all eigenvalues and eigenfunctions of the Sturm-Liouville eigenvalue

problem.

y′′ + λy = 0, 0 < x < p,

y′(0) = 0, y(p) = 0.

Plot first three eigenfunctions with p = 1/2, p = 2. Also answer the following

questions:

(a). Can the eigenvalues of regular Sturm-Liouville eigenvalue problem be

complex numbers?

(b). Are there finite or infinite number of distinct eigenvalues?

(c). If ym(x) and yn(x) are two eigenfunctions corresponding to two different

eigenvalues λm and λn, what is the result of
∫ p

0
ym(x)yn(x)dx if m 6= n?

How about
∫ p/2

0
ym(x)yn(x)dx?
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E4.10 Solve the 1D wave equation
∂2u

∂t2
= 4

∂2u

∂x2
according to the following conditions:

(a). The Cauchy problem −∞ < x < ∞ with u(x, 0) = xe−x,
∂u

∂t
(x, 0) =

e−x.

(b). The boundary value problem u(0, t) = 0, u(2, t) = 0, 0 < x < 2 with

u(x, 0) = sin(4πx),
∂u

∂t
(x, 0) = sin(4πx).

(c). The boundary value problem u(0, t) = 0, u(2, t) = 0, 0 < x < 2 with

u(x, 0) = x,
∂u

∂t
(x, 0) = x2.

E4.11 Repeat the problem for the 1D heat equation
∂u

∂t
= 4

∂2u

∂x2
according to the

following conditions:

(a). The boundary value problem u(0, t) = 0, u(2, t) = 0, 0 < x < 2 with

u(x, 0) = sin(4πx).

(b). The boundary value problem u(0, t) = 0, u(2, t) = 0, 0 < x < 2 with

u(x, 0) = x.

E4.12 Solve the 1D wave equation
∂2u

∂t2
= c2

∂2u

∂x2
with

∂u

∂x
(0, t) = 0, u(L, t) = 0

and the initial condition u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x). Find the solution

when c = 3, L = 2, g(x) = 1, and f(x) =

 1 if 0 ≤ x < 1,

0 if 1 ≤ x ≤ 2.

E4.13 Solve the 1D heat equation
∂u

∂t
= c2

∂2u

∂x2
with u(0, t) = 0,

∂u

∂x
(L, t) = 0 and

the initial condition u(x, 0) = f(x).

(a). Let u(x, t) = X(x)T (t), derive the equations for X(x) and T (t).

(b). Solve the related Sturm-Liouville eigenvalue value problem for X(x) first.

(c). Solve for T (t) using the eigenvalues above.

(d). Find the series solution to the 1D heat equation.

(e). Find the solution when c = 3, L = 2, and f(x) =

 1 if 0 ≤ x < 1,

0 if 1 ≤ x ≤ 2.
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Chapter 5

Various Fourier series,

properties and

convergence

We have seen that
{

sin nπx
L

}
and

{
cos nπxL

}
play very important roles in the series of

solution of partial differential equations of boundary value problems by the method

of separation of variables. While these orthogonal functions are obtained from

Sturm-Liouville eigenvalue problems, they should have reminded us of Fourier series

in which {sinnx} and {cosnx} are used. Fourier series have wide applications in

many areas of sciences and engineering particularly in electro-magnetics, signal

processing, filter design, and fast computation using fast Fourier transforms (FFT).

In this chapter, we will introduce various Fourier series, discuss the properties and

convergence of those series. We will see three kinds of Fourier expansions of a

function f(x):

1 General Fourier expansions in (−L,L)

f(x) ∼ ā0 +

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
; (5.1)

When L = π, we obtain the classical Fourier series. The reason to use ā0

rather than a0 can be seen later.

2 Half-range sine expansions in (0, L)

f(x) ∼
∞∑
n=1

bn sin
nπx

L
; (5.2)

3 Half-range cosine expansions (0, L)

f(x) ∼ ā0 +

∞∑
n=1

an cos
nπx

L
. (5.3)

63
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5.1 Period, piecewise continuous/smooth functions

We know that sinx, cosx, sin 2x, cos 2x, · · · , are all period functions. The above

three types of Fourier expansions all involve sine and cosine functions that are

periodic. What is a period function? A function repeats itself in a fixed pattern.

Definition 5.1. If there is a positive number T such at f(x + T ) = f(x) for any

x, then f(x) is called a period function with a period T .

According to the definition, f(x) should be defined in the entire space (−∞, ∞).

Also, if f(x) = f(x+ T ), then f(x+ 2T ) = f(x+ T + T ) = f(x+ T ) = f(x); and

2T is also a period of f(x). To avoid the confusion, we only use the smallest such

a T > 0, which is called the fundamental period, or simply the period, for short.

Example 5.1. Find the period of sinx, cosx, tanx, and cotx.

The period of sinx, cosx is 2π, while the period of tanx, cotx is π.

Example 5.2. Are the following functions periodic? If so, find the period of the

functions,

cosπx, sinx+ tanx, sinx+ cos
x

2
, sinx+ x, cosmx.

1 Yes, cosπx = cosπ(x+ T ) = cos(πx+ πT ); so the period is T = 2.

2 Yes, the sum of two periodic functions is still periodic; the period is the larger

one, T = 2π.

3 Yes, sinx + cos x2 = sin(x + T ) + cos x+T
2 . Since the period of the second

function is T/2 = 2π, we conclude that the period is T = 4π.

4 No, since x is not a periodic function.

5 Yes, from cosmx = cosm(x+ T ) = cos(mx+mT ), we know that mT = 2π;

thus the period is T =
2π

m
.

Note that if f(x) = C, then it is a periodic function of any period including

the zero. From the above example, we also know that the set {1, cos nxL }
∞
n=1 has a

common period T = 2Lπ, the largest period of all cos nxL for all n’s.

Example 5.3. Let f(x) = x− int(x) = x− [x], where [x] is called a floor function,
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which means that [x] is the greatest integer not larger than x, for example, [1.5] = 1,

[0.5] = 0, [−1.5] = −2, or the integer toward left. Then f(x) is a period function

with period T = 1. The period function can be expressed as

f(x) = x, if 0 ≤ x < 1,

= x− [x], otherwise,
(5.4)

or simply f(x) = f(x+ 1) outside [0, 1]. Often it is enough to write down the func-

tion expression in one period and state that the function is periodic with the period

specified. Figure 5.1 (a) is a plot of the integer (floor) function while Figure 5.1 (b)

is a plot of the fraction part function that is a periodic with period T = 1.

(a)

-2 -1 0 1 2

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
The floor function f(x)=[x]

(b)

-2 -1 0 1 2

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
The fractional part of x, f(x)=x-[x]

Figure 5.1. Plots of some piecewise continuous functions. (a): the inte-

ger (floor) function that is not periodic. (b): the fractional part of x that can be

expressed as f(x) = x− int(x) which is periodic with period T = 1.

Example 5.4. The sawtooth function is defined by

f(x) =


1
2 (−π − x) if −π ≤ x < 0,

1
2 (π − x) if 0 ≤ x ≤ π,

(5.5)

and f(x) = f(x + 2π), see Figure 5.2 (b) for the function plot along its Fourier

series and sum partial sums. Note that sometime it may be easier if we use the

expression in the interval (0, 2π) since it is one continuous piece as

f(x) =
1

2
(π − x) , 0 ≤ x < 2π,
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66 Chapter 5. Various Fourier series, properties and convergence

and f(x) = f(x+ 2π). Figure 5.2 is a plot of the sawtooth function whose Fourier

series and some partial sums are plotted in Figure 5.6.

-5 0 5

x

-1.5

-1

-0.5

0

0.5

1

1.5

The sawtooth function

Figure 5.2. Plots of the sawtooth function that is periodic with period T = 2π.

Piecewise continuous/smooth functions

If a function f(x) is continuous in [a, b], then for any x0 ∈ [a, b], we have lim
x→x0

f(x) =

f(x0). We call that f(x) is in the continuous function space (set with operations)

denoted as f(x) ∈ C[a, b]. It is obvious that functions: sinx, cosx, x3 + 1, and their

linear combinations are continuous functions in any interval [a, b]. The functions

f(x) = 1/x is discontinuous at x = 0, but is continuous on any interval that does not

contain the origin. Note that 1/x is continuous on (0, 1] but not [0, 1]. The function

tanx is continuous on [0, 1] but not on [0, π2 ] since the left limit lim
x→π

2−
f(x) = ∞.

From these examples, we should see the difference between ‘[ ’ (included) and ‘( ’

(not included) in describing an interval.

If there are finite number of points x1, x2, · · · , xN in [a, b] at which a function

is not continuous, but has finite left and right limits, that is

lim
x→xi−

f(x) = f(xi−) and lim
x→xi+

f(x) = f(xi+)

exist but f(xi−) may not be the same as f(xi+), then such a function is called

a piecewise continuous function in (a, b), or precisely, a piecewise continuous and

bounded function. Below is an example of a piecewise continuous and bounded
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function.

Example 5.5. The Heaviside function H(x) =

 0 if −∞ < x < 0,

1 if 0 ≤ x <∞,
is a piece-

wise continuous function, which is also called a step function.

Figure 5.1, the floor function and the fractional part function, and Figure 5.2,

the sawtooth function, are some examples pf piecewise continuous functions. Pay

attention to when we use little hollow o’s, and little filled o’s.

If f(x) is a continuous function on an interval (a, b), but f ′(x) is piecewise

continuous on (a, b), then f(x) is called a piecewise smooth function on (a, b). Below

is an example.

Example 5.6. The hat function h(x) =

 1− |x| if |x| ≤ 1,

0 otherwise,

is continuous but non-differentiable at x = 0 in the classical definition of derivatives.

The derivative of the has function is

h′(x) =


0 if |x| > 1,

1 if −1 < x < 0,

−1 if 0 < x < 1,

which is discontinuous at x = −1, x = 0, and x = 1. It is obvious that the

hat function is a piecewise smooth function, while h′(x) is a piecewise continuous

function, which is also a step function. Figure 5.3 shows a plot of the hat function

at the left, and the derivative of the hat function at the right.

Properties of period functions

The set of all period functions with the same period T form a linear space. That is,

let f(x) and g(x) be two period functions of period T , then w(x) = αf(x) + βg(x)

is also a period function of period T . Note again that a period function is defined
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(a)

-2 -1 0 1 2

x

0

0.2

0.4

0.6

0.8

1

The hat function

(b)

-2 -1 0 1 2

x

-1

-0.5

0

0.5

1

The derivative of hat function

Figure 5.3. Plot of the piecewise smooth hat function and its derivative.

(a): the hat function; (b): the derivative of the hat function.

in the entire space −∞ < x <∞.

Theorem 5.2. Let f(x) be a period function of period T and integrable, then∫ T

0

f(x)dx =

∫ a+T

a

f(x)dx (5.6)

for any real number a.

Proof: To prove the theorem, we just need to show that
∫ a+T

a
f(x)dx is a

constant function of a. Therefore, we define F (a) =
∫ a+T

a
f(x)dx and take the

derivative with respect to a to get,

dF (a)

da
= f(a+ T )− f(a) = 0.

Thus, F (a) must be a constant, so F (0) = F (a) = F (−T/2) = · · · , which leads to,

∫ T

0

f(x)dx =

∫ a+T

a

f(x)dx =

∫ a+T
2

a−T2
f(x)dx.

Often we prefer to use the period that

• f(x) is a continuous piece;

• integration starts from the origin (a = 0);

• integration from a symmetric interval (−T2 ,
T
2 ).
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5.2 The classical Fourier series expansion and partial

sums

Let f(x) be a periodic function of 2π and f(x) ∈ L2(−π, π). The classical Fourier

series expansion of f(x) is defined as

f(x) ∼ ā0 +

∞∑
n=1

(an cosnx+ bn sinnx) . (5.7)

The coefficients ā0, {an} and {bn} are called the Fourier coefficients and can be

computed from the following formulas,

ā0 =
1

2π

∫ π

−π
f(x)dx, an =

1

π

∫ π

−π
f(x) cosnx dx, (5.8)

bn =
1

π

∫ π

−π
f(x) sinnx dx, n = 1, 2, · · · . (5.9)

Note that ā0 has different formula from other an’s by a factor of 2. We can use the

same formula if we use

f(x) ∼ a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) . (5.10)

We list a few applications of the Fourier series below:

• Express f(x) in terms of simpler trigonometrical functions;

• Provide an approximation method for evaluating f(x) using the partial sum

defined as

SN (x) = ā0 +

N∑
n=1

(an cosnx+ bn sinnx) , (5.11)

as used in many computer packages for a given number N . We hope that

lim
N→∞

SN (x) = f(x);

• Basis for several fast algorithms such as Fast Fourier Transform (FFT);

• Used for spectral (frequency) analysis, signal processing, filters, etc.

Note that if x is a time variable for some physical applications, we call that

f(x) is defined in the time domain, while {an}∞n=0 , {bn}
∞
n=1 are defined in the

frequency domain.
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Classical Fourier series of f(x) ∈ L2(a, b):

f(x) ∼ a0

2
+
∞∑
n=1

(an cosnx+ bn sinnx) ,

an =
1

π

∫ π

−π
f(x) cosnx dx, bn =

1

π

∫ π

−π
f(x) sinnx dx.

(5.12)

Example 5.7. Find the classical Fourier series of f(x) = x.

Solution: We may wonder f(x) = x is not a periodic function and why it

can have a Fourier expansion. In fact, we only use part of f(x) = x in the interval

(−π, π) and disregard the rest (truncation ). We then use the piece of f(x) = x in

the interval (−π, π) to generate a periodic function (extension),

f̃(x) =

 x if |x| ≤ π,

f̃(x+ 2π) otherwise,

to get a periodic function that is identical to f(x) in the interval (−π, π), see Fig-

ure 5.4 for an illustration. The function f̃(x) is piecewise continuous and bounded

with discontinuities at x = ±2nπ, n = 1, 2, · · · . We use the formula to calculate the

Fourier coefficients,

a0 =
1

π

∫ π

−π
f(x)dx = 0, an =

1

π

∫ π

−π
f(x) cosnxdx = 0, n = 1, 2, · · · ,

since f(x) and f(x) cosnx are odd functions. Furthermore, we have

bn =
1

π

∫ π

−π
x sinnxdx =

2

π

∫ π

0

x sinnxdx = − 2

nπ
x cosnx

∣∣∣∣π
0

= (−1)n+1 2

n
.

Thus, we get

x ∼
∞∑
n=1

(−1)n+1 2

n
sinnx = 2 sinx− sin 2x+

2

3
sin 3x− 1

2
sin 4x+ · · · .

From the formula (5.12), we can have the Fourier series for any function f(x)

on (−π, π) literally as long as those integrations in the formula are finite. But the

series may or may not converge, or converge to a value that is different from f(x).
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To discuss the convergence of a Fourier series, we use the partial sums defined as

before,

SN (x) = f(x) ∼ a0

2
+

N∑
n=1

(an cosnx+ bn sinnx) . (5.13)

If the limit lim
N→∞

SN (x∗) = S(x∗) exists, then S(x∗) is defined as the value of the

series at x∗.

In Figure 5.4 (a), we plot the function f(x) = x and a few partial sums of its

Fourier series, S1(x), S5(x), S55(x) using the Maple. Figure 5.4 (b) is the function

plot and the series plot in the interval (−3π, 3π). From the figure, we can see that

the partial sum SN (x) has the following properties:

1 converges to f(x) in the interior of (−π, π) as N →∞;

2 its value at x = ±π is not the left or right limit of f̃(x), rather than its

average, for example, at x = π,

lim
N→∞

SN (π) =
f̃(π−) + f̃(π+)

2
= 0; (5.14)

3 SN (x) oscillates at the discontinuities ±2nπ, n = 1, 2, · · · . It is called the

Gibb’s phenomenon.

Note that the series itself is not oscillatory and it is identical to f(x) = x in the

interval (−π, π), and it is zero at x = ±π which is the average of the left and right

limits of the new period function f̃(x), the same as the value of partial sums at

x = ±π, see Figure 5.4 (b).

Example 5.8. Find the classical Fourier series of f(x) = 10 sinx + 5 sin 6x +
1
2 cos 30x.

Solution: The Fourier series of f(x) is itself with a30 = 0.5, b1 = 10, b6 = 5.

In Figure 5.5, we plot of the function and can see clearly the three frequencies and

their strengths that agree with the function.

Example 5.9. Find the Fourier series of the sawtooth function f(x) = 1
2 (π − x),

0 ≤ x < 2π, f(x+ 2π) = f(x).

Note that f(x) is an odd function in the interval of (−π, π), thus an = 0, for

n = 0, 1, · · · . For the coefficients of bn, it is easier to use one continuous piece in
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(a) (b)

-10 -5 0 5 10

x

-8
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-4

-2

0

2

4

6

8

Plot of x and its Fourier series

f(x)=x

Figure 5.4. (a): Plots of function f(x) = x and some partial sums S1(x),

S5(x), S55(x) of the Fourier series of the function. (b): Plots of the Fourier series

of f̃(x) whose values at x = ±3π,±π are zero, and f(x) = x, the dotted line. Note

that the two functions are identical in (−π, π).

Figure 5.5. Plot of f(x) = 10 sinx + 5 sin 6x + 1
2 cos 30x. We can see

clearly three different frequencies.
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(0, 2π) to calculate the coefficients bn,

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

∫ 2π

0

1

2
(π − x) sinnx dx

=
1

2π

(∫ 2π

0

π sinnx dx+
x cosnx

n

∣∣∣2π
0
−
∫ 2π

0

x cosnx

n
dx

)
=

1

2π

2π

n
=

1

n
.

Thus, the Fourier series is, see also Figure 5.2 (a),

1

2
(x− π) ∼

∞∑
n=1

sinnx

n
= sinx+

1

2
sin 2x+

1

3
sin 3x+ c · · ·+ sinnx

n
+ · · · .

In Figure 5.2, we plot the function f(x) = (π − x) of period 2π and a few partial

sums. We observe that the partial sum converges to f(x) = x − π except at those

discontinuities at x = 0 and x = ±π. Once again, we see the Gibb’s oscillations of

the partial sums around the discontinuities. It is also important to note that the

series converges to f(x) in the interval except at the discontinuities where the value

of the series is the average of the left and right limits which is zero in this case.

There is no oscillations in the Fourier series though!

(a) (b)

-5 0 5

x

-1.5

-1

-0.5

0

0.5

1

1.5

The sawtooth function & its Fourier series

Figure 5.6. (a): Plots of some partial sum of the Fourier series of the

sawtooth function. (b): Plot the sawtooth function and its Fourier series. They are

identical except at the discontinuities where the series is the average of the left and

right limits.
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Example 5.10. Find the Fourier series of the triangular wave.

f(x) =

 x+ π if −π ≤ x < 0,

π − x 0 ≤ x ≤ π,
(5.15)

and f(x) = f(x + 2π). Note that we can rewrite the function as one piece as

f(x) = π − |x| in the interval (−π, π), which is an even function in (−π, π). The

function is continuous in the interval and it is piecewise smooth.

Solutions: Note that f(x) is an even function, we have

ā0 =
1

2π

∫ π

−π
f(x)dx =

1

π

∫ π

0

(π − x)dx = − 1

π

(π − x)2

2

∣∣∣∣π
0

=
π

2

an =
1

π

∫ π

−π
f(x) cosnxdx =

2

π

∫ π

0

(π − x) cosnxdx

=
2

π

(
(π − x) sinnx

n

∣∣∣∣π
0

+
1

n

∫ π

0

sinnxdx

)

=
2

π

(
− cosnx

n2

∣∣∣∣π
0

)
=

2

π

(
1

n2
− (−1)n

n2

)

=
2

π


2

n2
if n is odd,

0 if n is even.

We can use one simple notation a2k+1 = 4
π(2k+1)2 to cover both situations.

Thus, we have,

f(x) =
π

2
+

∞∑
n=0

4

π(2n+ 1)2
cosπ(2n+ 1)x.

Since f(x) is continuous everywhere, we have the equality in the entire interval! In

Figure 5.7, we plot the function of the triangular wave f(x) = π− |x| of period 2π,

and a few partial sums. We observe that the partial sum converges to f(x) = π−|x|
in the entire domain. We do not see the Gibb’s oscillations but round-ups at the

kinks, x = 0 and x = ±π.

We can get some identities from the Fourier series. In this example, we have

f(0) = π =
π

2
+

∞∑
n=0

4

π(2n+ 1)2
, (5.16)
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Figure 5.7. Plot of the triangular wave and several partial sums. There

is no Gibb’s phenomenon but round-up at the kinks. The series is identical to the

function of the triangular wave.

which provide an alternative way in computing π if we multiply π from both sides

and simplify to get

π2

2
=

∞∑
n=0

4

(2n+ 1)2
=⇒ π2

8
= 1 +

1

32
+

1

22
+

1

72
+ · · · .

5.3 Fourier series of functions with arbitrary periods

Given a period function f(x) ∈ L2(−L,L) with f(x + T ) = f(x) and T = 2L, we

can also have a Fourier series expansion of f(x) in (−L, L). To derive the Fourier

series for a periodic function of 2L, we use a linear transform to convert the interval

(−L, L) to (−π, π), apply the Fourier expansion, and then transform back using

the original variable.

Let t = αx and α is chosen such that when x = −L, t = −π, and when x = L,

t = π. It is easy to get α = π
L . Define also f(x) = f( tα ) = F (t). We can verify that

F (t) is a period function of 2π since

F (t+ 2π) = f

(
t+ 2π

α

)
= f

(
t

α
+

2π

α

)
= f

(
t

α
+ 2L

)
= f

(
t

α

)
= F (t).
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76 Chapter 5. Various Fourier series, properties and convergence

Thus, F (t) has the Fourier series,

F (t) ∼ ā0 +

∞∑
n=1

(an cosnt+ bn sinnt) ,

ā0 =
1

2π

∫ π

−π
F (t)dt, an =

1

π

∫ π

−π
F (t) cosnt dt,

bn =
1

π

∫ π

−π
F (t) sinnt dt, n = 1, 2, · · · .

By changing the variable again using t = π
L in all the expressions above, we get

Fourier Series of f(x) with an Arbitrary Period 2L:

f(x) ∼ a0

2
+
∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
(5.17)

an =
1

L

∫ L

−L
f(x) cos

nπx

L
dx, bn =

1

L

∫ L

−L
f(x) sin

nπx

L
dx.

In the expression above we have an, n = 0, 1, · · · , · · · , and bn, n = 1, 2, · · · . Note

that the above formula includes the classical Fourier series if we take L = π. Thus,

it is enough just to remember this formula. Again the partial sum of the Fourier

expansion in (−L,L) is defined as

SN (x) = ā0 +

N∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
(5.18)

for a positive integer N > 0.

Example 5.11. Recall that the fractional part of x is a periodic function of period

T = 1 and p = 1. The function can be written as f(x) = x − int(x). We can find

its Fourier series in (−1, 1).

Using the formula, we have

ā0 =
1

2

∫ 1

−1

f(x)dx =
1

2

(∫ 0

−1

(x+ 1)dx+

∫ 1

0

xdx

)
=

1

2
,

an =

∫ 1

−1

f(x) cos
nπx

p
dx =

∫ 0

−1

(x+ 1) cosnπx dx+

∫ 1

0

x cosnπx dx = 0,
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bn =

∫ 1

−1

f(x) sin
nπx

p
dx =

∫ 0

−1

(x+ 1) sin
nπx

p
dx+

∫ 1

0

x sin
nπx

p
dx

=

∫ 0

−1

sin
nπx

p
dx+ 2

∫ 1

0

x sin
nπx

p
dx = − 1

nπ
(1− (−1)n) +

1

nπ
(−1)n

=


0 if n = 2k + 1,

− 2

(nπ)
if n = 2k,

Thus, we obtain

f(x) =
1

2
−
∞∑
k=1

1

kπ
sin(2kπx).

In Figure 5.8, we plot the function f(x) = x − int(x) and several partial sums of

the Fourier series. The Fourier series converges to f(x) in the interior. We observe

the Gibb’s oscillations at the discontinuity at x = 0, and the two end points x = −1

and x = 1.

(a) (b)

-1 -0.5 0 0.5 1

x

0

0.2

0.4

0.6

0.8

1

Figure 5.8. (a): Plots of some partial sum of the Fourier series of the

fraction part function, f(x) = x − int(x). (b): Plot the function and its Fourier

series. They are identical except at the discontinuity x = 0 and two end points

x = ±1 where the series is the average of the left and right limits of the periodic

function.

Remark 5.1. For the fractional part function example, the period is T = 1, we can

also have the Fourier series in (− 1
2 ,

1
2 ) which will be different from that in (−1, 1).
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Example 5.12. Expand f(x) = |x| in Fourier series in (−p, p) for a parameter

p > 0.

Solution: Note that f(x) is an even function, we have

ā0 =
1

2p

∫ p

−p
|x|dx =

2

2p

∫ p

0

xdx =
1

p

x2

2

∣∣∣∣p
0

=
p

2
,

an =
1

p

∫ p

−p
|x| cos

nπx

p
dx =

2

2p

∫ p

0

x cos
nπx

p
dx

= − 2p

(nπ)2
(1− cosnπ) =


0 if n = 2k,

− 4p

(nπ)2
if n = 2k + 1,

bn =
1

p

∫ p

−p
|x| sin nπx

p
dx = 0,

since f(x) and f(x) cos nπxp are even functions, and f(x) sin nπx
p is an odd function.

Thus, we obtain

|x| = p

2
−
∞∑
n=0

4p

((2n+ 1)π)2
cos

(2n+ 1)πx

p

=
p

2
− 4p

π2

(
cos

πx

p
+

1

32
cos

3πx

p
+

1

52
cos

5πx

p
+

1

72
cos

7πx

p
+ · · ·

)
.

In Figure 5.9, we take p = 1 and plot the function f(x) and several partial sums of

the Fourier series in the interval (−2, 2). The Fourier series converges to |x| only in

the interval [−1, 1] including the two end points. No Gibb’s phenomenon is present

for the partial sums since the function is piecewise smooth. But we do see that the

kink of |x| at x = 0 is smoothed by the partial sums, which are called round-ups.

When p = π, we get the classical Fourier series in [−π, π],

|x| = π

2
−
∞∑
n=0

4

(2n+ 1)π
cos(2n+ 1)x

=
π

2
− 4

π

(
cosx+

1

32
cos 3x+

1

52
cos 5x+

1

72
cos 7x+ · · ·

)
.

Remark 5.2. In the expansion above, we expand the 2p-function f(x) = |x| and

f(x + 2p) = f(x) in terms of the Fourier series. The expansion is the same as
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Figure 5.9. Plot of the Fourier series and several partial sums of |x| in the

interval (−2, 2) with p = 1. The Fourier series converges to |x| only in the interval

[−1, 1].

that for function g(x) = |x| in the interval (−p, p) but totally different outside the

interval. There is no Gibb’s phenomenon and the series is convergent to |x| in

(−p, p). The process can be summarized as extension and expansion.

Example 5.13. Expand f(x) = sinx in Fourier series in (−p, p) for a parameter

p > 0.

Solution: If p = π, then the Fourier expansion of sinx is itself. Otherwise,

we can expand sinx in terms of sin nπx
p . Note that an = 0, n = 0, 1, · · · , since f(x)

is an odd function. We just need to find bn,

bn =
1

p

∫ p

−p
sinx sin

nπx

p
dx =

2

2p

∫ p

0

sinx sin
nπx

p
dx

=
2p (nπ sin p cosnπ − p cos p sin(nπ))

p2 − π2n2
.

The integration is obtained by using the formula

sinα sinβ = −1

2
(cos(α+ β)− cos(α− β))

or using the Maple command
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80 Chapter 5. Various Fourier series, properties and convergence

Figure 5.10. Plots of several partial sums of the Fourier series of sinx in

the interval (−2, 2) with p = 1. The Fourier series converges to sinx only in the

interval (−1, 1).

\int_0^p \sin x \sin \frac{n \pi x}{p} dx;

For the special case p = 1, we can get

sinx =

∞∑
n=1

(−1)n+1 2nπ sin 1 sin(nπx)

n2π2 − 1
,

which is valid only in the interval (−1, 1), see Figure 5.10 for an illustration.

It is important to know the relations among the function itself, its Fourier

series, and the partial sums. If the function f(x) is continuous at a point x∗, then the

series has the same value as that of f(x). The partial sums are approximations to

f(x) and are different from f(x) in general, that is, f(x∗) 6= SN (x∗). Nevertheless,

the limit of the partial sum is f(x∗), that is, limN→∞ SN (x∗) = f(x∗) if f(x) is

continuous at x∗. If f(x) is discontinuous at a point x∗, then the value of the series

is the average of the left and right limit, that is

lim
N→∞

SN (x∗) = S(x∗) =
lim

x→x∗,x<x∗
f(x) + lim

x→x∗,x>x∗
f(x)

2
=
f(x∗−) + f(x∗+)

2
.
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−1

f(x)
Fourier Series

0 0

11

1 1

−1

Figure 5.11. Plots of f(x), its Fourier series, and partial sums. Left:

f(x); Middle: Fourier series; Right: Two partial sums with N = 2, N = 30. Gibb’s

oscillations can been seen at the discontinuities if N is large enough.

We use a step function below to illustrate the relations,

f(x) =

 −1 if −1 ≤ x < 0,

1 0 ≤ x < 1.
(5.19)

In Figure 5.11, we plot the step function in the left; the Fourier series of the function

in the middle; and two partial sums of the Fourier series in the right. We can see

that f(x) is piecewise continuous. The Fourier series is identical to f(x) except at

the discontinuities x = −1, x = 0, and x = 1. At these points, the Fourier series is

the average of the left and right limit of the function, for example,

S(0) =
f(0−) + f(0+)

2
=
−1 + 1

2
= 0, (5.20)

which is the same at x = −1 and x = 1. The partial sums are not the same as

f(x) but they will get closer to f(x) as N increases except at those discontinuities

at which the values are also the average of the left and right limit of the function.

Note also that we will see the Gibb’s oscillations around the discontinuities if N is

large enough. Intuitively, the Fourier series tries to approximate both the left and

right limit, which is impossible and causes the oscillations.

5.4 Half-range expansions

We have already seen that we can choose different expansions and seen some con-

nections between Fourier series and orthogonal functions from the theory of Sturm-

Liouville eigenvalue problems. With half-range expansion, we can also reduce some

workload compared to a full range expansion, and impose some special properties
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of the expansions. The techniques once again is based some particular truncations

and extensions.

Let f(x) be a piecewise continuous function in (0, L)4. If we extend f(x),

0 ≤ x ≤ L in the following way,

fe(x) =

 f(x) if 0 ≤ x ≤ L,

f(−x) if −L < x < 0,
(5.21)

which is called an even extension of f(x), then we can have the Fourier series

expansion of fe(x) in the interval (−L,L). Since fe(x) is an even function, we have

bn = 0 and the expansion has cosine functions only

ā0 =
1

2L

∫ L

−L
fe(x)dx =

1

L

∫ L

0

f(x)dx, (5.22)

an =
1

L

∫ L

−L
fe(x) cos

nπx

L
dx =

2

L

∫ L

0

f(x) cos
nπx

L
dx. (5.23)

Also in the interval, we have fe(x) = f(x), thus we obtain:

Half Range Cosine Series Expansion of f(x) in (0, L):

f(x) =
a0

2
+
∞∑
n=1

an cos
nπx

L
, an =

2

L

∫ L

0

f(x) cos
nπx

L
dx, (5.24)

for n = 0, 1, 2, · · · . The expansion is valid only in (0, L).

Similarly, if we extend f(x) , 0 ≤ x ≤ L according to

fo(x) =

 f(x) if 0 ≤ x ≤ L,

−f(−x) if −L < x < 0,
(5.25)

which is called an odd extension of f(x), then we can have the Fourier series ex-

pansion of fe(x) in the interval (−L,L). Since fo(x) is an odd function, we have

an = 0 and the expansion has sine functions only

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx, (5.26)

4In fact, the discussions are valid for any interval (a, b) (b > a). we can use a shift s = x − a

to change the domain from (a, b) in x to (0, b− a) in terms of s.
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n = 1, 2, · · · ,. Also in the interval, we have fo(x) = f(x), thus we have

Half Range Sine Series Expansion of f(x) in (0, L):

f(x) ∼
∞∑
n=1

bn sin
nπx

L
, bn =

2

L

∫ L

0

f(x) sin
nπx

L
dx, (5.27)

for n = 1, 2, · · · . The expansion is valid only in (0, L).

Example 5.14. Expand f(x) = x in both half range cosine and sine series in (0, 1).

What is the relation of the expansion with the Fourier series in (−1, 1).

Solution: The function f(x) is an odd function. Thus, the half range sine

series is the same as the Fourier series in (−1, 1) for which the coefficients an = 0

and bn can be calculated as (verified by Maple),

bn = 2

∫ 1

0

x sin(nπx)dx = −2
cosnπ

nπ
= (−1)n

2

nπ
.

Thus, the sine expansion (and the Fourier expansion) of f(x) = x in the interval

(0, 1) is

x =

∞∑
n=1

(−1)n
1

nπ
sin(nπx), x ∈ (0, 1).

The series is convergent in the interior of [0, 1) but is zero at x = 1 (f(1) 6= S(1)), see

Figure 5.12 (b) for plots of the function, and several partial sums of the expansion.

Note that the partial sums SN (x) have Gibb’s oscillations near x = 1 if N is large

enough.

For the cosine half range expansion, the expansion is only valid in [0, 1], we

have

a0 =

∫ 1

0

xdx =
1

2
, an = 2

∫ 1

0

x cos(nπx)dx = 2
cosnπ − 1

(nπ)2
=

−4

(2k − 1)2π2
.

Thus, the cosine expansion of f(x) = x in the interval (0, 1) can also be represented

as

x =
1

2
− 4

π2

∞∑
n=1

cos(2n− 1)πx

(2n− 1)2
.
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The series is convergent in the entire interval of [0, 1], see Figure 5.12 (a) for plots

of the function and several partial sums of the expansion. In this case, we have

faster convergence of the partial sum of the cosine expansion compared with the

sine expansion. Note that the partial sums SN (x) do not have Gibb’s oscillations

but round-ups near x = 1 if N is large enough.

(a) (b)

Figure 5.12. Half range cosine/sine Fourier expansions of f(x) = x in

(0, 1) and plots of several partial sums. (a) Half cosine, the series is convergent in

[0, 1]; (b) Half sine, the series is convergent in [0, 1) but not to x at x = 1.

Example 5.15. Expand f(x) = cosx in both half range cosine and sine series

in (0, π). What is the relation of the expansion with the Fourier series in (−π, π).

How about in (0, 1)?

Solution: The function f(x) = cosx is an even function. Thus, the half range

cosine series is the same as the Fourier series in (−π, π) or any 2π intervals, which

is itself but it is different in (−1, 1).

For the half-range sine expansion, we have (verified by Maple)

bn =
2

π

∫ π

0

cosx sin(nx)dx =
2

π

n(cosnπ + 1)

n2 − 1
=

1

π

8k

(2k)2 − 1
,

where n = 2k since for odd n’s, bn = 0. Thus, the sine expansion of f(x) = cosx in

the interval (0, π) is

cosx =

∞∑
n=1

1

π

8n

4n2 − 1
sin(2nx), x ∈ (0, π).

The series is convergent in the interior of (0, π) but not to cosx at x = 0 and

x = π, see Figure 5.13 (a) for plots of the function, and several partial sums of the
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expansion. Note that the partial sums SN (x) have Gibb’s oscillations near x = 0

and x = π if N is large enough.

We also plot the function and several partial sums of the cosine expansion

of cosx in (0, 1). In this case, the series is convergent in the entire interval [0, 1]

including two end points. The partial sums SN (x) have round-ups at x = 1 if N is

large enough but no Gibb’s oscillations .

(a) (b)

Figure 5.13. Illustration of half range sine/cosine Fourier expansions of

f(x) = cosx. (a): plots of the function, several partial sums of the half range sine

expansion on (0, π). The series is convergent to f(x) = cosx in (0, π) but not at

two ends; (b): half range cosine on (0, 1). The series is convergent to f(x) = cosx

on [0, 1] including the two ends.

5.5 Some theoretical results of various Fourier series

First of all, from the orthogonality of
{

cos nπxL
}∞
n=0

and
{

sin nπx
L

}∞
n=1

, we can easily

prove the Parseval’s identity.

Parseval’s identity: If f(x) ∈ L2(−L,L) and

f(x) =
a0

2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
, −L < x < L,

then the following Parseval’s identity holds

Parseval’s Identity

1

2L

∫ L

−L
|f(x)|2dx =

a2
0

4
+

1

2

∞∑
n=1

(
a2
n + b2

n

)
. (5.28)
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Note that the identity is not true for the integration in any interval but only for

(−L,L) for which the trigonometric functions on the right hand side is orthogonal!

Example 5.16. If f(x) =

∞∑
n=0

cosnx

2n
, find the value of

∫ π

−π
f2dx.

Solution: In this example, L = π, a0 = 2, an = 1
2n , bn = 0, thus we have

1

2π

∫ L

−L
|f(x)|2dx = 1 +

1

2

∞∑
n=1

1

22n
= 1 +

1

2

(
1/4

1− 1/4

)
=

7

6

=⇒
∫ π

−π
|f(x)|2dx =

7π

3
.

From Parseval’s identity, we can get some useful identities of series like the one

above
1

2

∞∑
n=1

1

22n
.

Now we discuss the calculus of Fourier series, which often deals with the limits,

the differentiation, and integration of Fourier series. The tool is to use the partial

sum of a series. We want to know whether the following is true.(
lim
x→x0

;
d

dx
;

∫ β

α

dx

)
f(x)

?
=

∞∑
n=0

(
lim
x→x0

;
d

dx
;

∫ β

α

dx

)(
an cos

nπx

L
+ bn sin

nπx

L

)
.

The partial sum forms a sequence {S0(x), S1(x), S2(x), · · · , SN (x), · · · } or

{SN (x)}. Note that SN (x) has two parameters, x and N . We will discuss two

kinds of convergence, pointwise and uniform convergence in an interval. We will

discuss more general sequence fn(x).

A pointwise convergence of fn(x) is defined for a fixed point x in an interval

(a, b) such that lim
n→∞

fn(x) = f(x). For the partial sum SN (x), the pointwise

convergence is the same as the convergence of the series.

Example 5.17. Are the following sequences convergent? (a), fn(x) =
sinnx

n
; (b),

gn(x) = nxe−nx+1.

Solution: (a), lim
n→∞

fn(x) = lim
n→∞

sinnx

n
= 0 for any x. (b), we can use the

I’Hospital’s rule to get the limit, that is, lim
n→∞

gn(x) = lim
n→∞

nxe

enx
= lim

n→∞

xe

xenx
= 0

for any x 6= 0, in which we differentiate n in the L’Hôspital’s rule.
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In above examples, both fn(x) and gn(x) are convergent to zero in any interval.

The function fn(x) gets smaller and smaller as n gets large, while there are always

points x near zero such that gn(x) ∼ 1 no matter how large n can be. Such an

fn(x) is also called uniformly convergent, while gn(x) is not uniformly convergent

in the interval (0, π). Note that gn(x) is uniformly convergent in any interval (a, b)

if a > 0.

Definition 5.3. Let fn(x) be a sequence defined in an interval [a, b] and fn(x) has

the pointwise convergence lim
n→∞

fn(x) = f(x) for any x in [a, b]. Given any number

ε > 0 (no matter how small it may be), if there is an integer N such that

|fn(x)− f(x)| < ε for any n > N and x in [a, b], (5.29)

then fn(x) is called uniformly convergent to f(x) in [a, b].

In the previous example, given an ε > 0, for fn(x) = sinnx
n , we have

|fn(x)| =
∣∣∣∣ sinnxn

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣ < ε,

as long as n ≥ int(1/ε)+1. Thus, we can take N = int(1/ε)+1 after which we have

|fn(x)− 0| < ε. However, for gn(x) = nxe−nx+1, no matter how large n is, we can

find an x = 1/n for which gn(x) = 1 which can no be smaller than an arbitrarily

small number ε. Thus, gn(x) is not uniformly convergent.

Definition 5.4. For a given series

∞∑
n=0

un(x), if the partial sum {SN (x)} is uni-

formly convergent in an interval [a, b], then the series is called uniformly convergent

in the interval [a, b].

It is not easy to check whether a series is a uniformly convergent or not

according to the definition. How do we know if a series is uniformly convergent

without using the partial sum and the definition? The idea is to compare the series

with a convergent series that does not have x in the series, which is always uniformly

convergent. This is summarized in the Weierstrass M-test theorem.

Theorem 5.5. Weierstrass M-test theorem. Given a series

∞∑
n=0

un(x) that satisfies
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the following conditions

(i) : |un(x)| ≤Mn independent of x in an interval [a, b], (5.30)

(ii) :

∞∑
n=0

Mn <∞ the series that does not have x converges, (5.31)

then the series is uniformly convergent in the interval [a, b].

Example 5.18. Are the following series uniformly convergent? Find intervals that

the series are uniformly convergent.

(a) :

∞∑
n=1

sinnx

n2
, (b) :

∞∑
n=1

sinnx

n
, (c) :

∞∑
n=1

e−nx sinnx.

Solution: (a): We know that∣∣∣∣ sinnxn2

∣∣∣∣ ≤ ∣∣∣∣ 1

n2

∣∣∣∣ and the series

∞∑
n=1

1

n2

is convergent. Thus, the series is uniformly convergent. For (b), we can not use

the Weierstrass M-test since the series
∑∞
n=1

1
n is divergent. So we do not have a

conclusion about the uniform convergence since the theorem is a sufficient but not

necessary. We will see the series cannot be uniformly convergent below. For (c), in

any interval (a, b) where a > 0, we have

|e−nx sinnx| ≤ e−nx ≤ e−na, and

∞∑
n=1

e−na

is convergent. Thus, the series is uniformly convergent in (a, b) when a > 0. The

series does not converge if x < 0, and it is convergent but not uniformly in any

interval (0, b) for b > 0.

Theorem 5.6. If a series

f(x) =

∞∑
n=1

un(x)

is uniformly convergent in an interval (a, b), then the series, after we take a limit,

or integrate, or differentiate, term by term, is still convergent in the interval (a, b),

that is, (
lim
x→x0

;
d

dx
;

∫ β

α

dx

)
f(x) =

∞∑
n=0

(
lim
x→x0

;
d

dx
;

∫ β

α

dx

)
un(x).
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We may be able to use the theorem to further determine the uniform con-

vergency of a series if the Weierstrass M-test fails. Reconsider the example (b)

above for the series
∑∞
n=1

sinnx
n for which the Weierstrass M-test fails. If the series

was uniformly convergent, then we could take the derivative term by term to get a

convergent series which is obviously untrue since the series
∑∞
n=1 cosnx after the

differentiation term by term diverges for almost any x. Thus, the series is not uni-

formly convergent. Another rule of thumb is that if the partial sums have Gibb’s

oscillations, then the series are not uniformly convergent. Therefore, the Fourier

series for sawtooth function, the fractional part of x, and most half-range sine ex-

pansions are not uniformly convergent, while the Fourier series for triangular wave,

and most half-range cosine expansions are uniformly convergent.

5.6 Exercises

E5.1 Find the period of the following functions. f(x) = 5, f(x) = cosx, f(x) =

cos(πx), f(x) = cos(px), f(x) = cos2 x, f(x) = cosx sinx, f(x) =

cos(x/2) + 3 sin(2x), f(x) = tan(mx) + esin(2x), and
{

cos
nπx

L

}∞
n=0

.

E5.2 Expand f(x) = x and g(x) = x2 as following series.

(a). (Half-range) sine series on (0, 2).

(b). (Half-range) cosine series on (0, 2).

(c). Fourier series on (−2, 2).

Check the pointwise and uniform convergence of all the series. Plot or sketch

the series and the partial sums for large N .

E5.3 Given
∂2u

∂t2
− 2

∂2u

∂x2
= 0. Find the general solution, and also do the following.

(a). Solve the Cauchy problem (−∞ < x < ∞) with u(x, 0) = |x|, |x| ≤ 1

and u(x, 0) = 0 elsewhere; and
∂u

∂t
(x, 0) = 0. Sketch the solution for

t = 5.

(b). Solve the Cauchy problem (−∞ < x < ∞) with u(x, 0) = e−x cosx,
∂u

∂t
(x, 0) = sinx.

(c). Solve the boundary value problem 0 < x < 3 with u(0, t) = u(3, t) = 0;

u(x, 0) = sin(6πx),
∂u

∂t
(x, 0) = sin(24πx).
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90 Chapter 5. Various Fourier series, properties and convergence

(d). Solve the boundary value problem 0 < x < 3 with u(0, t) = u(3, t) = 0;

u(x, 0) = x+ 1,
∂u

∂t
(x, 0) = cosx.

E5.4 Let f(x) = x, −π ≤ x < π be a 2π-periodic function.

(a). Sketch the function in the interval [−3π, 3π].

(b). Find the Fourier Series Expansion for f(x). Sketch the partial sums

SN (x) for large N , and the Fourier series.

(c). Are the formulas

bn =
1

π

∫ π

−π
f(x) sin(nx) dx, bn =

1

π

∫ 2π

0

f(x) sin(nx) dx

the same? Why? Evaluate the second integration.

(d). Find the common period of 1, cos(nx), sin(nx), n = 1, 2, · · · .

E5.5 Expand f(x) = cos(2x) according to the following. Check whether the series

are uniformly convergent or not; sketch the partial sums SN (x) with large N

and the series (mark Gibb’s oscillations or round-ups if applies); and write

down the Parseval’s identity.

(a). The classical Fourier series in (−π, π).

(b). The Fourier series in (−1, 1).

(c). Half range sine series in (0, π).

(d). Half range cosine series in (0, 1).

(e). Half range cosine series in (0, π).

Note: Pay attention to normal modes. It is okay to use Maple in some cases.

If you do by hand, you need to evaluate the integrals.

E5.6 Write down the Parseval’s identity corresponding to the classical Fourier series

of f(x) = x2.

E5.7 Find the Fourier series of the following f(x) in (−p, p), sketch f(x), the

partial sums SN (x) with large N , and the Fourier series in (−p, p).

(a). f(x) = −1, −p ≤ x < 0; f(x) = 1, 0 ≤ x < p.

(b). f(x) = a
(

1− (xp )2
)
,−p ≤ x < p.

(c). f(x) =

 c if |x| ≤ d,

0 d < |x| < p,
where 0 < d < p.
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E5.8 Find the half-range sine and cosine expansions of function f(x) in (0, p),

sketch f(x), the partial sums SN (x) with large N , and the Fourier series in

(0, p)

(a). f(x) = 1, p = 1.

(b). f(x) = 1, p = 3π.

(c). p = 2, f(x) =

 0 if 0 < x ≤ 1,

x− 1 1 < x < 2.

(d). f(x) = sin(πx) cos(πx), p = 2π.

E5.9 (a). Use the Parseval’s identity and the Fourier series expansion of f(x) = x/2

in (−π, π),

x

2
=

∞∑
n=1

(−1)n+1

n
sinnx

to obtain

∞∑
n=1

1

n2
=
π2

6
.

(b). From (a) to obtain that

∞∑
k=1

1

(2k)2
=
π2

24
.

(c). Combine (a) and (b) to derive the identity

∞∑
k=0

1

(2k + 1)2
=
π2

8
.

E5.10 Compute

∫ π

−π
f2(x)dx using the Parseval’s identity.

(a) :f(x) =

∞∑
n=1

cosnx

n2
; (b) : f(x) = 1 +

∞∑
n=1

(
cosnx

3n
+

sinnx

n

)
.

Hint: Use the geometric series and the table of Zeta functions, see

https://en.wikipedia.org/wiki/Particular_values_of_the_Riemann_zeta_function.

E5.11 Use the Weierstrass M-test to judge whether the following series are uniformly

convergent or not.

(a).

∞∑
n=1

(
cosnx

n2
+

sinnx

n3

)
.

(b).

∞∑
n=1

xn

n!
, |x| ≤ 10.
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92 Chapter 5. Various Fourier series, properties and convergence

(c).

∞∑
n=1

cos(x/n)

n
for all x.

Which series are continuous, differentiable, and integrable, on which intervals?

E5.12 Group work: Design a wave filter that can only certain frequencies to pass,

say [a, b]. Use this example to check

W (x) = 2.5 sinx+ 4 cos(3x) + 10 cos(20(x+π)) + 0.02 sin(100∗x) + εrand(x).

In the above, rand(x) is a random number generator. In the above function,

which frequency is dominant? If ε = 0, what is the Fourier series of W (x)?

Let ε = 10−5, find the Fourier series of W (x) then carry out the filtering.
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Chapter 6

Series solutions of PDEs

of boundary value

problems

In this chapter, we continue to discuss the method of separation of variables for

various boundary value problems of partial differential equation. We will see more

relations of the solution with the Sturm-Liouville eigenvalue problems, orthogonal

expansions, and various Fourier series.

6.1 One-dimensional wave equations

Recall one-dimensional wave equations,

∂2u

∂t2
= c2

∂2u

∂x2
, (6.1)

where c > 0 is called a wave number in physics. We have already known how to

solve the problem for various situations.

• The general solution is u(x, t) = F (x− ct) +G(x+ ct), where F (x) and G(x)

are two arbitrarily differentiable functions, that is, no conditions are attached

to the partial differential equation.

• Solution to a Cauchy problem, that is, given u(x, 0) = f(x); ∂u
∂t (x, 0) = g(x),

∞ < x <∞, the solution is given by the D’Alembert’s formula

u(x, t) =
1

2
(f(x− at) + f(x+ at)) +

1

2c

∫ x+at

x−at
g(s)ds.

• Solution to some boundary value problems with normal modes initial condi-

tions, that is, given an interval 0 < x < L, the normal modes solution for

93
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94 Chapter 6. Series solutions of PDEs of boundary value problems

some special u(x, 0) = f(x) and ut(x, 0) = g(x), which can be expressed as

f(x) =

n∑
n=1

an sin
nπx

L
, g(x) =

n∑
n=1

bn sin
nπx

L
.

The solution is

u(x, t) =

n∑
n=1

(
an sin

nπx

L
cos

nπct

L
+

bn
nπc

sin
nπx

L
sin

nπct

L

)
.

• General initial conditions, u(x, 0) = f(x), ∂u
∂t (x, 0) = g(x), 0 < x < L. The

solution is

u(x, t) =

∞∑
n=1

sin
nπx

L

(
bn cos

cnπt

L
+ b∗n sin

cnπt

L

)
,

where the coefficients are determined by

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx,

b∗n =
2

cnπ

∫ L

0

g(x) sin
nπx

L
dx.

Note that the coefficients bn’s are obtained from the half-range sine expansion

of f(x) and b∗n’s are obtained from the half-range sine expansion of g(x) by a

constant that depends on n.

Now we discuss how to solve more general one-dimensional wave equations.

Example 6.1. An example with non-homogeneous boundary condition.

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L,

u(0, t) = u0, u(L, t) = u0,

u(0, t) = f(x),
∂u

∂t
(x, 0) = g(x), 0 < x < L.

In this case, we can use the transformation

v(x, t) = u(x, t)− u0

to get the homogenous BC for v(x, t)

∂2v

∂t2
= c2

∂2v

∂x2
, 0 < x < L,

v(0, t) = 0, v(L, t) = 0,

v(0, t) = f(x)− u0,
∂v

∂t
(x, 0) = g(x), 0 < x < L.
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The solution then will be

u(x, t) = u0 +

∞∑
n=1

sin
nπx

L

(
bn cos

cnπt

L
+ b∗n sin

cnπt

L

)
where the coefficients are determined by

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx,

b∗n =
2

cnπ

∫ L

0

g(x) sin
nπx

L
dx.

Challenge: How about different boundary condition ∂u
∂x (0, t) = 0 and u(L, t) =

0. What are the normal mode solutions?

6.2 Series solution of 1D wave equations with

derivative boundary conditions

An example with a Neumann boundary condition is given below,

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L,

u(0, t) = 0,
∂u

∂x
(L, t) = 0,

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x), 0 < x < L,

We will get a different Sturm-Liouville eigenvalue problem and a different expansion.

Step 1: Let u(x, t) = T (t)X(x) and plug its partial derivatives into the origi-

nal PDE so that we can separate variables. The homogeneous boundary conditions

require X(0) = X ′(L) = 0. Differentiating u(x, t) = T (t)X(x) with respect to t and

x, respectively, we get

∂u

∂t
= T ′(t)X(x),

∂2u

∂t2
= T ′′(t)X(x);

∂u

∂x
= T (t)X ′(x),

∂2u

∂x2
= T (t)X ′′(x).

The wave equation can be re-written as

T ′′(t)X(x) = c2T (t)X ′′(x) =⇒ T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
= −λ. (6.2)
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96 Chapter 6. Series solutions of PDEs of boundary value problems

This is because in the last equality, the left hand side is a function of t while the

right hand side is a function of x, which is possible only both of them are a constant

independent of t and x. We can get eigenvalues either for X(x) or T (t). Since we

know the boundary condition for X(x), naturally we should solve

X ′′(x)

X(x)
= −λ or X ′′(x) + λX(x) = 0, X(0) = 0, X ′(L) = 0 (6.3)

first.

Step 2: Solve the eigenvalue problem. From the Sturm-Liouville eigenvalue

theory, we know that λ > 0 since the q(x) in the S-L eigenvalue problem is zero.

Thus the solution of x(x) is,

X ′′(x) = C1 cos
√
λx+ C2 sin

√
λx.

From the boundary condition X(0) = 0, we get C1 = 0. From the boundary

condition X ′(L) = 0, we get

C2 cos
√
λL = 0, =⇒

√
λL =

π

2
+ nπ, n = 0, 1, 2, · · · ,

since C2 6= 0. Note that, different from before, we should include n = 0. The

eigenvalues and their corresponding eigenfunctions are

λn =

(
(2n+ 1)π

2L

)2

, Xn(x) = sin
(2n+ 1)πx

2L
, n = 0, 1, 2, · · · .

Now we solve for T (t) using

T ′′(t) + c2λnT (t) = 0. (6.4)

The solution (not an eigenvalue problem anymore since we have already known λn)

of T (t) is,

Tn(t) = bn cos
(2n+ 1)πct

2L
+ b∗n sin

(2n+ 1)πct

2L
.

Putting Xn(x) and Tn(t) together, we get one normal mode solution with each n

un(x, t) = sin
(2n+ 1)πx

2L

(
bn cos

(2n+ 1)πct

2L
+ b∗n sin

(2n+ 1)πct

2L

)
, (6.5)

which satisfy the PDE, the boundary conditions, but not the initial conditions.

Step 3: Put all the normal mode solutions together to get the series solution

using the superposition. The coefficients are obtained from the orthogonal expan-

sion of the initial conditions. The solution to the IVP-BVP of the 1D wave equation

with a derivative boundary condition can be written as

u(x, t) =

∞∑
n=0

sin
(2n+ 1)πx

2L

(
bn cos

(2n+ 1)πct

2L
+ b∗n sin

(2n+ 1)πct

2L

)
(6.6)



“pde˙book”

2021/4/30

page 97i
i

i
i

i
i

i
i

6.2. Series solution of 1D wave equations with derivative boundary conditions 97

which satisfies the PDE and the boundary conditions. The coefficients of bn and b∗n
are determined from the initial conditions u(x, 0) = f(x) and ut(x, 0) = g(x),

u(x, 0) =

∞∑
n=0

bn sin
(2n+ 1)πx

2L
=⇒ bn =

2

L

∫ L

0

f(x) sin
(2n+ 1)πx

2L
dx

∂u

∂t
(x, 0) =

∞∑
n=0

sin
(2n+ 1)πx

2L

(
−bn

(2n+ 1)πc

2L
sin

(2n+ 1)πct

2L

+ b∗n
(2n+ 1)πc

2L
cos

(2n+ 1)πct

2L

)
,

∂u

∂t
(x, 0) =

∞∑
n=0

sin
(2n+ 1)πx

2L
b∗n

(2n+ 1)πc

2L
=⇒

b∗n =

2L

(2n+ 1)πc

∫ L

0

g(x) sin
(2n+ 1)πx

2L
dx∫ L

0

(
sin

(2n+ 1)πx

2L

)2

dx

=
4

(2n+ 1)πc

∫ L

0

g(x) sin
(2n+ 1)πx

2L
dx.

6.2.1 Summary of series solutions of 1D wave equations with

homogeneous linear BC’s

From above discussions, we can summarize the series solutions to 1D wave equations

with different boundary conditions below.

Series solutions of 1D wave equations

∂2u

∂t2
= c2

∂2u

∂x2
, u(x, 0) = f(x);

∂u

∂t
(x, 0) = g(x), 0 < x < L,

with homogeneous Dirichlet, Neumann, and Robin boundary conditions have

the following uniform form.

u(x, t) =

∞∑
n=1 or 0

Xn

(αnπx
L

)(
bn cos

αnπct

L
+ b∗n sin

αnπct

L

)
(6.7)

where

bn =
2

L

∫ L

0

f(x)Xn

(αnπx
L

)
dx, b∗n =

2

αnπc

∫ L

0

g(x)Xn

(αnπx
L

)
dx. (6.8)
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98 Chapter 6. Series solutions of PDEs of boundary value problems

Dirichlet-Dirichlet: u(0, t) = u(L, t) = 0. We have Xn

(αnπx
L

)
= sin

nπx

L
.

Dirichlet-Neumann:

u(0, t) = 0,
∂u

∂x
(L, t) = 0. We have Xn

(αnπx
L

)
= sin

( 1
2 + n)πx

L
.

Neumann-Dirichlet:

∂u

∂x
(0, t) = 0, u(L, t) = 0. We have Xn

(αnπx
L

)
= cos

( 1
2 + n)πx

L
.

Neumann-Neumann: Any constants are solutions so the solution is not

unique.

Dirichlet-Robin: u(0, t) = 0, u(L, t)+
∂u

∂x
(L, t) = 0. We have Xn

(αnπx
L

)
=

sin
αnπx

L
, where we do not have analytic expressions for αn.

For Robin-Dirichlet, or Neumann-Robin, or other linear boundary conditions,

we generally do not have an analytic form for the eigenvalues and eigenfunctions.

Thus, there are no analytic series solutions available.

6.2.2 Series solution of 1D wave equations of BVPs with a

lower order term

Consider an example of a 1D wave equation with a lower order term of the following,

∂2u

∂t2
+ a2u = c2

∂2u

∂x2
, 0 < x < L,

u(0, t) = 0, u(L, t) = 0,

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x).

Solution: The method of separation variables with u(x, t) = T (t)X(x) will

lead to

T ′′(t) + a2T (t)

c2T (t)
=
X ′′(x)

X(x)
= −λ. (6.9)

We still have λn = (nπL )2 and Xn(x) = sin nπx
L . But the solution of Tn(t) will be
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6.3. Series solution to 1D heat equations with various BC’s 99

different.

Tn(t) = bn cos

(√
a2 +

c2n2π2

L2
t

)
+ b∗n sin

(√
a2 +

c2n2π2

L2
t

)
. (6.10)

The solution then is

u(x, t) =

∞∑
n=1

sin
nπx

L

{
bn cos

(√
a2 +

c2n2π2

L2
t

)
+ b∗n sin

(√
a2 +

c2n2π2

L2
t

)}
,

with bn being the coefficient of the half range sine expansion of f(x)

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx, (6.11)

and

b∗n =
2

Lαn

∫ L

0

g(x) sin
nπx

L
dx, where αn =

√
a2 +

c2n2π2

L2
. (6.12)

Challenge for a group work: How about the modified PDE below

∂2u

∂t2
+ au = c2

∂2u

∂x2
, 0 < x < L,

assuming a is an arbitrary constant with the same boundary and initial conditions

above? The solution for T (t) may have two parts, the exponential functions and

trigonometric functions.

6.3 Series solution to 1D heat equations with various

BC’s

A one-dimensional (1D) heat equation

∂u

∂t
= c2

∂2u

∂x2
, (6.13)

is a good mathematical model of the temperature distribution in a rod in which c2

is called the heat conductivity. The above partial differential equation is a second

order, constant coefficients, linear, and homogeneous one. The PDE is classified as

a parabolic PDE. We can check that

u(x, t) =
1√

4πc2t
e
− x2

4c2t (6.14)
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100 Chapter 6. Series solutions of PDEs of boundary value problems

is a solution to the PDE. It is called a fundamental solution to the heat equation in

the place of general solutions for advection and wave equations. The fundamental

solution of the heat equation corresponds to an instant heat source at (0, 0). The

heat will be felt anywhere anytime instantly. Thus, the solution to a heat equation

is called global one meaning that a change at any place at any time will affect the

solution everywhere and anytime after. This is in contrast to solutions to advection

and wave equations.

The solution to the Cauchy problem

∂u

∂t
= c2

∂2u

∂x2
, −∞ < x <∞,

u(x, 0) = f(x),

(6.15)

is the convolution of f(x) and the fundamental solution,

u(x, t) =

∫ ∞
−∞

f(ξ)√
4c2πt

e
− (x− ξ)2

4c2t dξ. (6.16)

Note that there is only one initial condition since the PDE involves only the first

order derivative of the solution with time t.

Now we discuss the initial and boundary value problems for one-dimensional

heat equation with various boundary conditions. Note that for homogeneous Dirich-

let boundary condition u(0, t) = 0 and u(L, t) = 0, the derivation and the formula

of the series solution have been given in Section 4.6. We first review one example

here.

Example 6.2. We can solve some 1D heat equations of boundary value problems

with normal mode initial conditions as in the example below.

∂u

∂t
= 2

∂2u

∂x2
, 0 < x < 3,

u(0, t) = 0, u(3, t) = 0,

u(x, 0) = 5 sin(4πx)− 3 sin(8πx) + 2 sin(10πx).

Solution: It is clear that we can use the normal mode solutions for this

problem with L = 3, c2 = 2. The initial condition can be written as

u(x, 0) = B1 sin
m1πx

3
+B2 sin

m2πx

3
+B3 sin

m3πx

3

= 5 sin(4πx)− 3 sin(8πx) + 2 sin(10πx),
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6.3. Series solution to 1D heat equations with various BC’s 101

which is possible if and only if B1 = 5, m1 = 12, B2 = −3, m2 = 24, and B3 = 2,

m3 = 30. From the formula

u(x, t) =

∞∑
n=1

bn sin
nπx

L
e−c

2(nπL )2t,

we get the solution

u(x, t) = 5e−32π2t sin(4πx)− 3e−128π2t sin(8πx) + 2e−200π2t sin(10πx).

Now we consider the solution to the boundary and initial value problem

∂u

∂t
= c2

∂2u

∂x2
, 0 < x < L,

∂u

∂x
(0, t) = 0, u(L, t) = 0,

u(x, 0) = f(x),

(6.17)

using the method of separation of variables. Note that a homogeneous Neumann

boundary condition is prescribed at x = 0.

Step 1: Let u(x, t) = T (t)X(x) and plug its partial derivatives into the origi-

nal PDE so that we can separate variables. The homogeneous boundary conditions

require X ′(0) = 0 and X(L) = 0. Differentiating u(x, t) = T (t)X(x) with t and x

respectively, we get

∂u

∂t
= T ′(t)X(x),

∂u

∂x
= T (t)X ′(x),

∂2u

∂x2
= T (t)X ′′(x).

The heat equation can be re-written as

T ′(t)X(x) = c2T (t)X ′′(x) =⇒ T ′(t)

c2T (t)
=
X ′′(x)

X(x)
= −λ. (6.18)

This is because in the last equality, the left hand side is a function of t while the

right hand side is a function of x, which is possible only both of them are a constant

independent of t and x. We can solve the eigenvalue problems either for X(x) or

T (t). Since we know the boundary condition for X(x), naturally we should solve

X ′′(x)

X(x)
= −λ or X ′′(x) + λX(x) = 0, X ′(0) = X(L) = 0 (6.19)

first.

Step 2: Solve the eigenvalue problem. From the Sturm-Liouville eigenvalue

theory, we know that λ > 0 since the q(x) term in the S-L theorem is zero. Thus,
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102 Chapter 6. Series solutions of PDEs of boundary value problems

the solution of X(x) is

X(x) = C1 cos
√
λx+ C2 sin

√
λx,

X ′(x) = −C1

√
λ sin

√
λx+ C2

√
λ cos

√
λx.

From the boundary condition X ′(0) = 0, we get C2 = 0. From the boundary

condition X(L) = 0, we get

C1 cos
√
λL = 0, =⇒

√
λL = nπ +

π

2
, n = 0, 1, · · · ,

since C1 6= 0. The eigenvalues and their corresponding eigenfunctions are

λn =

(
(2n+ 1)π

2L

)2

, Xn(x) = cos
(2n+ 1)πx

2L
, n = 0, 1, 2, · · · .

Now we solve for T (t) using

T ′(t) + c2λnT (t) = 0. (6.20)

The solution (not an eigenvalue problem anymore since we have already known λn)

of T (t) is

Tn(t) = ane
−c2λnt = bne

−c2( (2n+1)π
2L )

2
t.

Putting Xn(x) and Tn(t) together, we get a normal mode solution for each n,

un(x, t) = an cos
(2n+ 1)πx

2L
e−c

2( (2n+1)π
2L )

2
t, (6.21)

which satisfy the PDE, the boundary conditions, but not the initial condition.

Step 3: Put all the normal mode solutions together to get the series solution.

The coefficients are obtained from the orthogonal expansion of the initial condition.

Thus, the solution to the initial and boundary value problem of the 1D wave

equation can be written as

u(x, t) =

∞∑
n=0

an cos
(2n+ 1)πx

2L
e−c

2( (2n+1)π
2L )

2
t (6.22)

which satisfies the PDE and the boundary conditions. The coefficients of bn are

determined from the initial conditions u(x, 0),

u(x, 0) =

∞∑
n=0

an cos
(2n+ 1)πx

2L
=⇒ an =

2

L

∫ L

0

f(x) cos
(2n+ 1)πx

2L
dx,

which is a Fourier expansion of the initial condition u(x, 0) = f(x) on (0, L).
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6.3. Series solution to 1D heat equations with various BC’s 103

Solutions to the 1D heat equation BVP with a homogeneous

Neumann BC have the following uniform form,

u(x, t) =
∞∑
n=0

an cos
(2n+ 1)πx

2L
e−c

2( (2n+1)πx
2L )

2
t,

an =
2

L

∫ L

0

f(x) cos
(2n+ 1)πx

2L
dx.

(6.23)

Example 6.3. Find the series solution for the heat equation of initial and boundary

value problem,

∂u

∂t
=
∂2u

∂x2
, 0 < x < 3,

∂u

∂x
(0, t) = 0, u(3, t) = 0,

u(x, 0) =


1 if 0 ≤ x ≤ 1,

1− x

2
if 1 ≤ x ≤ 2,

0 if 2 < x ≤ 3.

Solution: The example can be considered as the temperature distribution

when a rot was heated in some parts. Note that in this example, we have L = 3,

c = 1, and a homogeneous Neumann boundary condition at x = 0. The computation

of the coefficients an is somewhat complicated,

an =
2

3

∫ 3

0

f(x) cos
(2n+ 1)πx

6
dx

=
2

3

(∫ 1

0

cos
(2n+ 1)πx

6
dx+

∫ 2

1

(
1− x

2

)
cos

(2n+ 1)πx

6
dx

)

=
2
√

3 sin nπ
3 + 2 cos nπ3

(2n+ 1)π
+

(
36
√

3 sin nπ
3 + 18

√
3− (3 + 6n)π

)
cos nπ3

3(2n+ 1)2π2

+
18− 36 cos

(
nπ
3

)2 − (18 + (6n+ 3)
√

3π
)

sin nπ
3

3(2n+ 1)2π2
.
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104 Chapter 6. Series solutions of PDEs of boundary value problems

The computation has been verified by Maple. Thus, the series solution is

u(x, t) =

∞∑
n=0

an cos
(2n+ 1)πx

6
e−( (2n+1)πx

6 )
2
t.

In Figure 6.1, we show plots of the initial condition and several partial sums

of its series expansion with N = 1, N = 5, and N = 175. The series approximates

the function very well when N is large enough but oscillates at the discontinuity

x = 1, which is the Gibb’s phenomena. However, for heat equations, the oscillations

will soon be dampened and the solution becomes smooth. In the Maple file, one

can use the animation feature to see the evolution of the solution. Note that due to

the Neumann boundary condition at x = 0, the solution at x = 0 is not fixed and

moves to the steady state solution limt→∞ u(x, t) = 0 gradually as the rest part of

the solution.

Figure 6.1. Plots of the initial condition, three partial sums, N = 1, 5, 175

of the series expansion of the initial condition.

6.3.1 Summary of series solutions of 1D heat equations with

homogeneous linear BC’s

Similar to one dimensional wave equations, we can summarize the series solutions

to 1D heat equations.
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6.3. Series solution to 1D heat equations with various BC’s 105

Series solutions of 1D heat equations with homogeneous
linear BC’s:

∂u

∂t
= c2

∂2u

∂x2
, u(x, 0) = f(x), 0 < x < L,

with homogeneous Dirichlet, Neumann, and Robin boundary conditions below.

u(x, t) =

∞∑
n=1 or 0

anXn

(αnπx
L

)
e
−
(αnπc

L

)2

t
, (6.24)

where

an =
2

L

∫ L

0

f(x)Xn

(αnπx
L

)
dx. (6.25)

Dirichlet-Dirichlet: u(0, t) = u(L, t) = 0. We have Xn

(αnπx
L

)
= sin

nπx

L
.

Dirichlet-Neumann: u(0, t) = 0,
∂u

∂x
(L, t) = 0. We have Xn

(αnπx
L

)
=

sin
( 1

2 + n)πx

L
.

Neumann-Dirichlet:
∂u

∂x
(0, t) = 0, u(L, t) = 0. We have Xn

(αnπx
L

)
=

cos
( 1

2 + n)πx

L
.

Neumann-Neumann: Any constant is a solution and the solution is not

unique.

Dirichlet-Robin: u(0, t) = 0, u(L, t)+
∂u

∂x
(L, t) = 0. We have Xn

(αnπx
L

)
=

sin
αnπx

L
, where we do not have analytic expressions for αn.

For Robin-Dirichlet, or Neumann-Robin, or other linear boundary conditions,

we generally do not have an analytic form for the eigenvalues and eigenfunctions.

Thus, there are no analytic series solutions available in general.

6.3.2 Steady state solutions of 1D heat equations of BVPs

A steady state solution to a differential equation is a function independent of time

t that satisfies the following:
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106 Chapter 6. Series solutions of PDEs of boundary value problems

• It is a solution to the differential equation;

• It satisfies the boundary condition but it is independent of the initial condi-

tion;

• It is independent of time t, i.e.,
∂u

∂t
= 0.

A steady state solution is the result of long time behavior of the solution. Note

that, not all problems have a steady state solution.

Example 6.4. Find the steady state solution of the following if it exists,

∂u

∂t
= c2

∂2u

∂x2
, 0 < x < L,

u(0, t) = T1, u(L, t) = T2,

u(x, 0) = f(x), 0 < x < L.

Solution: The steady state solution denoted as us(x) is the solution to the following

problem (u(x, t) =⇒ us(x)),

0 = c2
d2us
dx2

, 0 < x < L,

us(0) = T1, us(L) = T2.

The general solution is us(x) = C1 +C2x. The boundary condition us(0) = T1 leads

to C1 = T1 and us(L) = T2 leads to the steady state solution

us(x) = T1 +
T2 − T1

L
x.

One application of a steady state solution is to transform non-homogeneous

boundary conditions to homogeneous ones. If we want to solve the 1D heat equation

above for anytime (not just long term behavior), we can define w(x, t) = u(x, t) −
us(x). Then, w(x, t) satisfies the homogeneous boundary conditions and is the

solution to the following

∂w

∂t
= c2

∂2w

∂x2
, 0 < x < L,

w(0, t) = 0, w(L, t) = 0,

w(x, 0) = f(x)− us(x), 0 < x < L.
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6.4. Two-dimensional Laplace equations of BVPs on rectangles 107

Once we have solved w(x, t), we get back the solution u(x, t) = w(x, t) + us(x).

Example 6.5. Solve the heat equation of the following

∂u

∂t
= 2

∂2u

∂x2
, 0 < x < 3,

u(0, t) = 10, u(3, t) = 40,

u(x, 0) = 25, 0 < x < 3.

Solution: In this example, we have us(x) = 10 + 10x. The function w(x, t) sat-

isfies the heat equation with the homogeneous boundary condition and the initial

condition w(x, 0) = u(x, 0)− us(x) = 25− 10− 10x = 15− 10x. From the formula

in (4.37), we have

w(x, t) =

∞∑
n=1

bn sin
nπx

3
e−2(nπ3 )2t,

where the coefficients are given

bn =
2

3

∫ 3

0

(15− 10x) sin
nπx

3
dx =

30

nπ
(cosnπ − 1) , n = 1, 2, · · · .

Thus, the solution to the original problem is

u(x, t) = 10 + 10x+

∞∑
n=1

30

nπ
(cosnπ − 1) e−2(nπ3 )2t sin

nπx

3
.

Note that not all the time dependent problems have steady state solutions.

For example, for the heat equation with u(0, t) = sin t, the boundary condition

depends on t and hence there is no steady state solutions.

6.4 Two-dimensional Laplace equations of BVPs on

rectangles

In this section, we consider the series solution to Laplace or Poisson equations on a

rectangular domain R,

∂2u

∂x2
+
∂2u

∂y2
= 0, or uxx + uyy = 0, (x, y) ∈ R, (6.26)

u(x, y)
∣∣∣
∂R

= w(x, y), or
∂u

∂n
(x, y)

∣∣∣∣
∂R

= g(x, y), (6.27)



“pde˙book”

2021/4/30

page 108i
i

i
i

i
i

i
i

108 Chapter 6. Series solutions of PDEs of boundary value problems

or other boundary conditions, where ∂u
∂n (x, y) is the directional derivative of u(x, y)

along the outer normal direction n ( |n| = 1). We use R to represent the rectan-

gular domain, while ∂R as the boundary of the rectangle. The partial differential

equation is second order, constant coefficients, homogeneous, linear PDE in two

space dimensions. It is classified as an elliptic PDE and the solution is a global one

which means that solution depends on the solution in the entire domain.

x=a

y=b

x

y

u=g

u=f

u  + u  = 0

u=g

u=f

xx yy

1

1

2

2

Figure 6.2. A diagram of a Laplace equation defined on a rectangular

domain with a Dirichlet boundary condition.

We can use the gradient operator∇u = [ ∂∂x ,
∂
∂y ]T to represent the Laplace/Poisson

equation in any (space) dimensions using ∇2u = 0, or ∆u = 0, for example, in two

dimensions, we have

∇2u = ∇ · u =

[
∂
∂x
∂
∂y

]T
·

[
∂u
∂x
∂u
∂y

]
= ∆u =

∂2u

∂x2
+
∂2u

∂y2
. (6.28)

The operator∇2 = ∆ is called the Laplace operator, where xT denotes the transpose

of the vector x. Note that the solution of a Laplace equation can be considered as

the steady state solution of a 2D heat equation (or a wave equation)

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, (x, y) ∈ R, (6.29)

u(x, y, t)
∣∣∣
∂R

= w(x, y), or
∂u

∂n
(x, y, t)

∣∣∣∣
∂R

= g(x, y), (6.30)

u(x, y, 0) = f(x, y) (6.31)
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6.4. Two-dimensional Laplace equations of BVPs on rectangles 109

for an arbitrary two dimensional function f(x, y). A Neumann boundary condition

means that the directional derivative is prescribed along the normal direction n

pointing to outside of the domain following the right hand side rule. For example,

for the diagram in Figure 6.2, at x = 0, the left boundary, a Neumann boundary

condition means that ∂u
∂n = −∂u∂x is given; while at x = a, the right boundary, a

Neumann boundary condition means that ∂u
∂n = ∂u

∂x is given. Applications of Laplace

equations can be found in potential flows, ideal flows, potential of electro-magnetics.

A conservative vector field satisfying div(u) = curl × u = 0 can be represented as

a potential of a scale function, u = ∇ϕ and ∆ϕ = 0. An example is the Newtonian

gravitational field. We can only solve one scalar equation instead of three equations

of a conservative vector field.

It is easy to check that u(x, y) = 1
2π log

√
x2 + y2 is a solution to the 2D

Laplace equation. It is called the fundamental solution for 2D Laplace equation,

which corresponds to a point source (charge) at (0, 0). In three dimension, the

fundamental solution is u(x, y, z) = 1
r = 1√

x2+y2+z2
. The fundamental solution

satisfies the PDE but not to boundary conditions in general.

To use the method of separation of variables, we wish to have at least two

homogeneous boundary conditions. Since the problem is linear, we can split the

problem into four sub-problems, see Figure 6.3 for an illustration. The final solution

will be the sum of the solutions of the sub-problems.

We solve one of the problems in Figure 6.3, the top-right one,

∂2u

∂x2
+
∂2u

∂y2
= 0, (x, y) ∈ R, (6.32)

u(x, b) = f2(x), u(x, 0) = 0, u(0, y) = 0, u(a, y) = 0. (6.33)

We set u(x, y) = X(x)Y (y) and separate the variables to get

X ′′

X
= −Y

′′

Y
= −λ. (6.34)

We inspect the two homogeneous boundary conditions that are X(0) = 0 and

X(a) = 0. Thus, we solve the Sturm-Liouville eigenvalue problem for X(x) to get

λn =
(nπ
a

)2

, Xn(x) = sin
nπx

a
, n = 1, 2, · · · . (6.35)

Next, we solve Y (y) from −Y
′′

Y = λn = (nπa )2 for each n which is not an S-L

eigenvalue problem anymore. The solution can be expressed as

Yn(y) = bne
−nπxa + b∗ne

nπx
a , (6.36)
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y=b

u  + u  = 0yy

x=a
x

xx

y=b

u  + u  = 0yy

x=a
x

xx

y=b

u  + u  = 0yy

x=a
x

xx

y=b

u  + u  = 0yy

x=a
x

xx

0 0

0

0

0

0

0

0

0

0

u u

u
u

1 2

3
4

g2(y)

f2(x)

f1(x)

g1(y)

Figure 6.3. A diagram of the decomposition of the solution to a Laplace

equation on a rectangular domain into four sub-problems.

or the hyperbolic sine and cosine functions

Yn(y) = Bn sinh
nπy

a
+B∗n cosh

nπy

a
. (6.37)

The hyperbolic sine and cosine functions are defined by

sinhx =
ex − e−x

2
, cosh =

ex + e−x

2
, (6.38)

respectively. They are linear independent since the Wronskian

det

(
sinhx coshx

coshx sinhx

)
= −1 6= 0 for any x. (6.39)

The hyperbolic cosine and sine functions have similar properties as sine and cosine

functions such as sinh(0) = 0, cosh(0) = 1, sinh′ x = coshx, cosh′ x = − sinhx etc.

Thus, it is easier and similar to the discussions in previous chapters using hyperbolic

sine and cosine functions. From Y (0) = 0, we get B∗n = 0 and we can write the
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6.4. Two-dimensional Laplace equations of BVPs on rectangles 111

solution to the Laplace equation as

u(x, y) =

∞∑
n=1

Bn sin
nπx

a
sinh

nπy

a
.

Plug the non-homogenous boundary condition along y = b, we get

u(x, b) =

∞∑
n=1

Bn sin
nπx

a
sinh

nπb

a
= f2(x).

Note that sinh nπb
a are constants and the set {sin nπx

a sinh nπb
a } is still an orthog-

onal set. From the orthogonal function expansion, we obtain the formula for the

coefficients,

Bn sinh
nπb

a
=

2

a

∫ a

0

f2(x) sin
nπx

a
dx,

=⇒ Bn =
2

a sinh nπb
a

∫ a

0

f2(x) sin
nπx

a
dx.

Example 6.6. Solve the Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x, y < 1, (a unit square in x-y plane),

u(x, 1) = x(1− x), u(x, y) = 0, on other three boundaries.

Solution: In this example, a = 1, b = 1, we have

Bn =
2

a sinh nπb
a

∫ a

0

f2(x) sin
nπx

a
dx =

2

sinhnπ

∫ 1

0

x(1− x) sinnπx dx

=
2

nπ sinhnπ
(− cosnπx)x(1− x)

∣∣∣∣1
0

+
2

nπ sinhnπ

∫ 1

0

(1− 2x) cosnπx dx

=
2

(nπ)2 sinhnπ
(1− 2x) sinnπx

∣∣∣∣1
0

− 2

(nπ)2 sinhnπ

∫ 1

0

(−2) sinnπx dx

=
4

(nπ)3 sinhnπ
(− cosnπx)

∣∣∣∣1
0

= − 4

(nπ)3 sinhnπ
(cosnπ − 1)

=
8

(2k − 1)3π3 sinh(2k − 1)π
, k = 1, 2, · · · .

The solution then is, see also Figure 6.4 and the Maple file Laplace.mw,

u(x, y) =

∞∑
n=1

8

(2n− 1)3π3

sin(2n− 1)πx sinh((2n− 1)πy

sinh(2n− 1)π



“pde˙book”

2021/4/30

page 112i
i

i
i

i
i

i
i

112 Chapter 6. Series solutions of PDEs of boundary value problems

Figure 6.4. Plot of the partial sum S20(x, y) of the series solution.

How do we find the solution for the first case, the top-left diagram in Figure 6.3,

i.e., u1(x, 0) = f1(x) and u1(x, y) = 0 on other three boundaries? We can repeat

the method of separation of variables; or we can change the problem to one that we

have already solved.

Let ȳ = b− y, x̄ = x, then

u1(x, y) = u1(x̄, b− ȳ)
define

= ū1(x̄, ȳ).

Then, we have the following

∂2ū1

∂x̄2
=
∂2u1

∂x2
,

∂ū1

∂ȳ
= −∂u1

∂y
,

∂2ū1

∂ȳ2
=
∂2u1

∂y2

∂2ū1

∂x̄2
+
∂2ū1

∂ȳ2
=
∂2u1

∂x2
+
∂2u1

∂y2
= 0,

ū1(0, ȳ) = u1(0, b− y) = 0, ū1(a, ȳ) = u1(a, b− y) = 0, ū1(x̄, 0) = u1(x, b) = 0,

ū1(x̄, b) = u1(x, 0) = f1(x).

We apply the previous solution formula to get

ū1(x̄, ȳ) =

∞∑
n=0

An sin
nπx̄

a
sinh

nπȳ

a
, An =

2

a sinh nπb
a

∫ a

0

f1(x) sin
nπx

a
dx.
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We switch to the original coordinates to get

u(x, y) =

∞∑
n=1

An sin
nπx

a
sinh

nπ(b− y)

a
.

For the non-homogeneous part along the boundaries x = 0 and x = a, we can

use the symmetry arguments by switching x with y, and a with b, we can get a

formula for the entire problem:

Solution to Laplace equation on a rectangle

u(x, y) =

∞∑
n=1

An sin
nπx

a
sinh

nπ(b− y)

a
+

∞∑
n=1

Bn sin
nπx

a
sinh

nπy

a

+

∞∑
n=1

Cn sin
nπy

b
sinh

nπ(a− x)

b
+

∞∑
n=1

Dn sin
nπy

b
sinh

nπx

b
,

(6.40)

where the coefficients are

An =
2

a sinh nπb
a

∫ a

0

f1(x) sin
nπx

a
dx, Bn =

2

a sinh nπb
a

∫ a

0

f2(x) sin
nπx

a
dx,

Cn =
2

b sinh nπa
b

∫ b

0

g1(y) sin
nπy

b
dx, Dn =

2

b sinh nπa
b

∫ b

0

g2(x) sin
nπy

b
dx.

6.5 Double series solutions for 2D wave equations of

BVPs*

For two and three dimensional problems, the method of separation of variables leads

to double or triple series solutions, respectively. We use a two dimensional wave

equation example to illustrate the process.

Consider a wave equation on a rectangular domain with homogeneous bound-

ary condition:

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
, (x, y) ∈ R, t > 0

u(x, y, t)
∣∣∣
∂R

= 0, R = (0, a)× (0, b)

u(x, y, 0) = f(x, y),
∂u

∂t
(x, y, 0) = g(x, y),

(6.41)
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114 Chapter 6. Series solutions of PDEs of boundary value problems

where we use R to represent the rectangular domain, and ∂R to represent its

boundary. To solve the problem using the method of separation of variables, we

perform the usual steps.

Step 1: Let u(x, y, t) = T (t)X(x)Y (y) and plug its partial derivatives into

the original PDE so that we can separate variables. The homogeneous bound-

ary conditions require X(0) = X(a) = 0 and Y (0) = Y (b) = 0. Differentiating

u(x, y, t) = T (t)X(x)Y (y) with respect to t, x, and y, we get

∂u

∂t
= T ′(t)X(x)Y (y),

∂2u

∂t2
= T ′′(t)X(x)Y (y);

∂u

∂x
= T (t)X ′(x)Y (y),

∂2u

∂x2
= T (t)X ′′(x)Y (y);

∂u

∂y
= T (t)X(x)Y ′(y),

∂2u

∂y2
= T (t)X(x)Y ′′(y).

The wave equation can be re-written as

T ′′(t)X(x)Y (y) = c2T (t) (X ′′(x)Y (y) + Y ′′(y)X(x)) ,

=⇒ T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
+
Y ′′(x)

Y (y)
= −ν.

(6.42)

This is because in the last equality, the left hand side is a function of t while the

right hand side is a function of x and y, which is possible only both of them are a

constant independent of t and x and y.

We can separate variables further since X′′(x)
X(x) is a function of x, and Y ′′(x)

Y (y) is

a function of y to write

X ′′(x)

X(x)
= −Y

′′(x)

Y (y)
− ν = −µ. (6.43)

We get three ordinary differential equations for X(x), Y (y), and T (t). Since we

know the boundary condition for X(x) and Y (y), naturally we should solve them

first

X ′′(x)

X(x)
= −µ or X ′′(x) + µX(x) = 0, X(0) = 0, X(a) = 0. (6.44)

Step 2: Solve the eigenvalue problems for X(x) and Y (y). From the Sturm-

Liouville eigenvalue theory, we know that the solution is

X ′′(x) = C1 cos
√
µx+ C2 sin

√
µx.
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6.5. Double series solutions for 2D wave equations of BVPs* 115

From the boundary condition X(0) = 0, we get C1 = 0. From the boundary

condition X(a) = 0, we get

C2 sin
√
µa = 0, =⇒ √

µa = mπ, m = 1, 2, · · · ,

since C2 6= 0. The eigenvalues and their corresponding eigenfunctions are

µm =
(mπ
a

)2

, Xm(x) = sin
mπx

a
, m = 1, 2, · · · , .

Similarly, we set Y ′′

Y = −ν + µ = −γ along with Y (0) = Y (b) = 0, to obtain

γn =
(nπy

b

)2

, Yn(y) = sin
nπy

b
, n = 1, 2, · · · .

Finally, we solve for T (t) using

T ′′(t)

c2T (t)
= −ν = −µ− γ = −

(mπ
a

)2

−
(nπ
a

)2

, m, n = 1, 2, · · · , .

The solution T (t) is (not an eigenvalue problem anymore since we have already

known νmn =
(
mπ
a

)2
+
(
nπ
a

)2
).

Tmn(t) = Bmn cos(νmnct) +B∗mn sin(νmnct)

Put Xm(x), Yn(y), and Tmn(t) together, we get a normal mode solution

umn(x, y, t) = sin
mπx

a
sin

nπy

b

(
Bmn cos(νmnct) +B∗mn sin(νmnct)

)
(6.45)

which satisfy the PDE, the boundary conditions, but not the initial conditions.

Step 3: Put all the normal mode solutions together to get the series solution.

The coefficients are obtained from the orthogonal expansion of the initial conditions.

The solution to the initial and boundary value problem of the 2D wave equation

can be written as

u(x, y, t) =

∞∑
m=1

∞∑
m=1

sin
mπx

a
sin

nπy

b

(
Bmn cos(νmnct) +B∗mn sin(νmnct)

)
,

which satisfies the PDE and the boundary conditions. The coefficients of Bmn and

B∗mn are determined from the initial conditions u(x, y, 0) and ut(x, y, 0). If we plug

t = 0 into the series solution, then we get

u(x, y, 0) =

∞∑
m=1

∞∑
m=1

sin
mπx

a
sin

nπy

b
Bmn = f(x, y).
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116 Chapter 6. Series solutions of PDEs of boundary value problems

From this we obtain

Bmn =

∫ a

0

∫ b

0

f(x, y) sin
mπx

a
sin

nπy

b
dxdy∫ a

0

∫ b

0

sin2 mπx

a
sin2 nπy

b
dxdy

=
4

ab

∫ a

0

∫ b

0

f(x, y) sin
mπx

a
sin

nπy

b
dxdy,

since the denominator can be obtained analytically.

Similarly, we get the formula for B∗mn

B∗mn =
4

abc νmn

∫ a

0

∫ b

0

g(x, y) sin
mπx

a
sin

nπy

b
dxdy,

where again νmn =

√(mπ
a

)2

+
(nπ
a

)2

.

In a similar way, we can use the method of separation of variables to solve

three dimensional Poisson equations or wave equations, which will lead to triple

series solutions. Alternatively, we can solve those equations using some numerical

methods, see for example, Chapter 8 which may be simpler.

6.6 Method of separation of variables for PDEs of

BVPs in polar coordinates

In many applications it is preferable to use polar coordinates (two space dimensions)

or cylindrical/spherical coordinates (three space dimensions), especially when we

deal with circles, annuli, etc., see Figure 6.5 for an illustration. Often we can solve

a two or three dimensional problem using one dimensional settings if the problem

possesses axial-symmetry. How will partial differential equations be changed using

the polar/cylindrical coordinates? We know that in polar coordinates

x = r cos θ, y = r sin θ, r =
√
x2 + y2, θ = arctan(y/x), (6.46)

where θ is the angle between the x-axis and the ray
−−→
OX, where X = (x, y) and

O is the origin in the two dimensional x-y plane. For a function u(x, y), we can

represent the function and its partial derivatives using (r, θ),

u(x, y) = u(r cos θ, r sin θ) = ū(r, θ). (6.47)
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✐ ✐

✐
✐

✐
✐

3.7. A finite difference method for Poisson equations in polar coordinates 71

r r r

BC BC

BC

periodic

θ θ θ

BC

BCBC

BC
2π 2πNo BC

BC

BC

periodic

r
θ

Figure 3.4. Diagrams of domains and boundary conditions that may be
better solved in polar coordinates.

at the origin, but some methods lead to an undesirable structure in the coefficient
matrix from the finite difference equations. One approach discussed is to use a
staggered grid:

ri =
(
i− 1

2

)
∆r, ∆r = R2

m− 1
2
, i = 1, 2, · · · ,m , (3.59)

where r1 = ∆r/2 and rm = R2. Except for i = 1 (i.e., at i = 2, · · · ,m − 1), the
conservative form of the finite difference discretization can be used. At i = 1, the
following non-conservative form is used to deal with the pole singularity at r = 0:

U0j − 2U1j + U2j
(∆r)2 + 1

r1

U2j − U0j
2∆r

+ 1
r2
1

U1,j−1 − 2U1j + U1,j+1
(∆θ)2 = f(r1, θj).

Note that r0 = −∆r/2 and r1 = ∆r/2. The coefficient of U0j in the above finite
difference equation, the approximation at the ghost point r0, is zero! The above
finite difference equation simplifies to

−2U1j + U2j
(∆r)2 + 1

r1

U2j
2∆r

+ 1
r2
1

U1,j−1 − 2U1j + U1,j+1
(∆θ)2 = f(r1, θj) ,

and we still have a diagonally dominant system of linear algebraic equations.

Figure 6.5. Diagrams of domains and boundary conditions that may be

better solved in polar coordinates. Top diagrams are domains in x-y plane, while

the bottom diagrams are domains in r-θ plane.

For simplicity, we often omit the bar if there is no confusion occurring. Next, we

replace the partial derivatives in terms of (r, θ) as well using the chain rule to obtain

∂u

∂x
=
∂u

∂r

∂r

∂x
+
∂u

∂θ

∂θ

∂x
,

∂u

∂y
=
∂u

∂r

∂r

∂y
+
∂u

∂θ

∂θ

∂y
.

From r =
√
x2 + y2, θ = arctan(y/x), we also have

∂r

∂x
=

2x

2
√
x2 + y2

=
r cos θ

r
=
x

r
,

∂θ

∂x
=

1

1 + ( yx )2

(
− y

x2

)
=

−y
x2 + y2

= − y

r2
= −r sin θ

r2
.
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118 Chapter 6. Series solutions of PDEs of boundary value problems

Thus, we get

∂u

∂x
=
∂u

∂r
cos θ +

∂u

∂θ

(
−r sin θ

r2

)
=
∂u

∂r

x

r
− ∂u

∂θ

y

r2
,

∂u

∂y
=
∂u

∂r

y

r
+
∂u

∂θ

x

r2
=
∂u

∂r
sin θ +

∂u

∂θ

cos θ

r
,

∂2u

∂x2
=

∂

∂x

(
∂u

∂r

x

r
− ∂u

∂θ

y

r2

)
· · ·

The derivations are long and tedious. Fortunately, for most practical partial dif-

ferential equations and/or vector relations, we can find the conversions through

mathematical handbooks or online tools. The Laplace equation in polar coordi-

nates in two-dimensions is

∆u = ∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0. (6.48)

Note that there is no ∂u
∂θ term in the expression above. We can use the dimension

analysis to figure out the coefficient in the above terms knowing that θ is a dimen-

sionless quantity. For the radial symmetric case, that is, the solution is independent

of θ, we have the simplified Laplace equation

∆u = ∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
= 0. (6.49)

Series solution to the Laplace equation of BVPs on a disc

Consider the Laplace equation defined on a circle with a radius a,

∆u = ∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0, 0 < r < a, 0 < θ < 2π, (6.50)

with a Dirichlet boundary condition at the circle boundary, that is, u(a, θ) = f(θ).

Note that r = 0 is an interior point, not a boundary. There is no boundary condition

at r = 0 except that the solution should be bounded. This is called the pole

condition. With the method of separation of variables, we set u(r, θ) = R(r)Θ(θ).

Following the procedure of the method, we obtain the following,

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0, (6.51)

or
R′′ + 1

rR
′

R
+

1

r2

Θ′′

Θ
= 0, (6.52)

separate variable =⇒ −r2

(
R′′ + 1

rR
′

R

)
=

Θ′′

Θ
= −λ. (6.53)
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We have two related Sturm-Liouville problems

Θ′′ + λΘ = 0, Θ(0) = Θ(2π), (6.54)

r2R′′ + rR′ − λR = 0, 0 < r < a. (6.55)

The boundary condition Θ(0) = Θ(2π) is a periodic one. We do not know the

solution of R(0) and R(a) except that they are bounded. Thus, we should solve the

first Sturm-Liouville eigenvalue problem first. If λ < 0, we would have

Θ(θ) = C1e
−
√
λθ + C2e

√
λθ,

which cannot be periodic, neither the case λ = 0 for which we have Θ(θ) = C1+C2θ.

Thus, we must have λ > 0 for which the solution is

Θ(θ) = C1 cos
√
λθ + C2 sin

√
λθ.

Apply the periodic boundary condition, we should have

Θ(θ) = C1 cos
√
λ(θ + 2π) + C2 sin

√
λ(θ + 2π) = C1 cos

√
λθ + C2 sin

√
λθ,

which leads to 2π
√
λ = 2πn, n = 0, 1, 2, · · · , or λ2

n = n2. Note that in this case,

n = 0 is a valid solution. The eigenfunctions then are

Θn(θ) = an cosnθ + bn sinnθ, n = 0, 1, 2, · · · . (6.56)

Next, we use the second ordinary differential equation (6.55) to solve for R(r)

which is not an S-L eigenvalue problem since λn = n2 is known for n = 0, 1, · · · .

r2R′′ + rR′ − n2R = 0, 0 < r < a. (6.57)

It is an Euler’s equation, see Appendix A.4. The indicial equation is

α(α− 1) + α− n2 = 0, (6.58)

whose solutions are

R(r) = Cn

( r
a

)n
+ C̄n

( r
a

)−n
, n = 0, 1, 2, · · · , (6.59)

using a convenient form. Since the solution is bounded at r = 0, we have to have

C̄n = 0 for n ≥ 1. Thus, the series solution is

u(r, θ) = a0 +

∞∑
n=1

( r
a

)n
(an cosnθ + bn sinnθ) . (6.60)
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We use
(
r
a

)n
form instead of rn just for convenience as we can see soon. We apply

the boundary condition (r = a) to get

u(a, θ) = a0 +

∞∑
n=1

(an cosnθ + bn sinnθ) = f(θ), (6.61)

which is the Fourier series expansion of f(θ). The coefficients are

a0 =
1

2π

∫ π

−π
f(θ)dθ, an =

1

π

∫ π

−π
f(θ) cosnθ dθ,

bn =
1

π

∫ π

−π
f(θ) sinnθ dθ, n = 1, 2, · · · .

Thus, we have found the series solution to the Laplace equation on a disc.

Example 6.7. Find the steady state solution of the following

∂u

∂t
= ∆u, x2 + y2 < 1,

u(1, θ, t) = 100− e−t, BC u(r, θ, 0) = r sin θ, IC.

Solution: The steady state solution is the solution to the following boundary

value problem,

∆us = 0, x2 + y2 < 1,

us(1, θ) = 100.

We can compute the coefficients of the Fourier series of f(θ) = 100 to get a0 = 100,

an = 0 and bn=0. The Fourier series itself corresponds to cos(0 · x) and the steady

state solution is us(θ) = 100.

How about u(1, θ, t) = sin 5θ+cos 7θ? The steady state solution is the normal

modes solution us(θ) = r5 sin 5θ + r7 cos 7θ.

How about u(1, θ, t) = 100 if 0 < θ < π and u(1, θ, t) = 0 if π < θ < 2π? We

have

a0 =
1

2π

∫ π

0

100 dθ = 50, an =
1

π

∫ π

0

100 cosnθ dθ = 0,

bn =
1

π

∫ π

0

100 sinnθ dθ =
100

π
− cosnθ

n

∣∣∣∣π
0

=
100

nπ
(1− (−1)n) .
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(a) (b)

Figure 6.6. (a): Plot of the boundary condition on the unit circle. (b):

mesh plot of the partial sum (N = 40) of the series solution to the Laplace equation

on the circle. Gibb’s oscillations are visible due to the discontinuity at θ = π but

the solution is smooth in the interior.

The solution is

us(r, θ) = 50 +
100

π

∞∑
n=1

1

n
(1− (−1)n) rn sinnθ

= 50 +
200

π

∞∑
k=1

r2k+1

2k + 1
sin(2k + 1)θ.

The series is uniformly convergent if r ≤ α < 1, but not in (0, 1). In Figure 6.6 (a),

we show a mesh plot of the boundary condition along r = 1 using the polar coor-

dinates. In Figure 6.6 (b), we show a mesh plot of the partial sum of the series

solution with N = 40 to the Laplace equation on the circle. Gibb’s oscillations

are visible due to the discontinuity at θ = π but the solution is smooth in the in-

terior. Solutions to Laplace equations are also called harmonic functions that are

indefinitely differentiable in any interior domains.

6.7 Series solution of 2D wave equations of BVPs

with radial symmetry

A wave equation in two space dimensions in polar coordinates can be written as

∂2u

∂t2
= c2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)
.

If the problem has the radial symmetry, then ∂2u
∂θ2 = 0. Let us consider a Dirichlet

boundary condition for a wave equation on a disk with a radial symmetry,

∂2u(r, t)

∂t2
= c2

(
∂2u

∂r2
+

1

r

∂u

∂r

)
, 0 < r < a,

u(a, t) = 0, BC at the disk, no BC at r = 0,

u(r, 0) = f(r),
∂u(r, 0)

∂t
= g(r), initial conditions.

(6.62)
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122 Chapter 6. Series solutions of PDEs of boundary value problems

We can solve the problem using the method of separation of variables as

follows. First we set u(r, t) = R(r)T (t); then differentiate u(r, t) with respect to r

and t, respectively; and plug them into the PDE to get

T ′′(t)R = c2
(
R′′ T +

1

r
R′ T

)
,

and separate the variables to get

T ′′

c2T
=
R′′ + 1

r R
′

R
= −λ.

As before, the eigenvalues of the Sturm-Liouville problems have to be positive oth-

erwise T (t) will be a constant, or go to zero or infinity. For positive eigenvalues, we

know that

Tn(t) = An cos(c
√
λn t) +Bn sin(c

√
λn t).

We cannot go further from this expression. Now let us check the equation for R(r)

R′′ +
1

r
R′λR = 0 =⇒ rR′′ +R′ + λrR = 0, 0 < r < a,

=⇒ (rR′)
′
+ (0 + λr)R = 0, R(a) = 0, R(0) is unknown but bounded.

This is a weighted and singular Sturm-Liouville eigenvalue problem with weight

function r ≥ 0 and a singularity at r = 0, which is called the pole singularity.

The equation can also be written as r2R′′+rR′+λr2R = 0. To get a standard

known Sturm-Liouville problem, we change the variable using µ =
√
λ r and R(r) =

R(µ/
√
λ) = R̄(µ). The differential equation in terms of the new variable µ is

µ2R̄′′ + µR̄′ + µ2R̄ = 0, (6.63)

which is one of the Bessel equations

x2y′′ + xy′ + (x2 − p2)y = 0, the p-th order Bessel equation. (6.64)

For the radial symmetric wave equation (6.62), we have p = 0, called the zeroth

Bessel equation. The general solutions to the Bessel equation of order p is

y(x) = C1Jp(x) + C2Yp(x), (6.65)

where Jp(x) is called the Bessel function of the first kind which is continuous in any

finite interval [0, a]. Yp(x) is called the p-th order Bessel function of the second kind

which is unbounded as x→ 0 corresponding to the pole singularity. In Figure 6.7,
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we show several plots of different Bessel functions. Figure 6.7 (a) shows three

first kind of Bessel functions in [0, 10]. We can see that the Bessel functions are

continuous everywhere including x = 0. The intersections of the functions and the

x-axis are the eigenvalues αn. Figure 6.7 (b) shows three second kind of Bessel

functions in the interval (0, 2]. We can see that the Bessel functions are unbounded

as x approaches the origin. The Maple commands are the following.

plot({BesselJ(0,x), BesselJ(1,x),BesselJ(2,x)},x=0..10,color=[red,blue,black]);

plot({BesselY(0,x), BesselY(1,x),BesselY(2,x)},x=0..2,y=-20..2,color=[red,blue,black]);

(a) (b)

Figure 6.7. The graphs of some Bessel functions. (a): Plot of

J0(x), J1(x), J2(x), the first three first kind of Bessel functions. (b): Plot of

Y0(x), Y1(x), Y2(x), the first three second kind of Bessel functions

The general solutions of Bessel’s equation (6.63) of order p = 0 can thus be

written using (6.65) as

R̄(µ) = C1J0(µ) + C2Y0(µ), or R(r) = C1J0(
√
λ r) + C2Y0(

√
λ r). (6.66)

From the differential equation theory and our knowledge on wave propagations, the

solution should be bounded at the center of the disk (r = 0). Thus, we conclude

that the coefficient C2 = 0. The solution of R(r) should also satisfy the boundary

condition R(a) = 0, or J0(
√
λa) = 0. Denote the infinitely many positive zeros αn

of J0(µ) as

0 < α0 < α1 < α2 · · · < αn < ... <∞, (6.67)

which leads to the eigenvalues
√
λn =

αn
a

. The λn are the eigenvalues of the original

eigenfunction Rn(r). Therefore, we have the solution for Rn(r),

Rn(r) = J0

(αn
a
r
)
, (6.68)
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and we know that the corresponding T (t) is

Tn(t) = An cos(c
√
λn t) +Bn sin(c

√
λn t). (6.69)

Finally we get the series solution to the original problem (6.62) as

u(r, t) =

∞∑
n=1

(
An cos

cαnt

a
+Bn sin

cαnt

a

)
J0

(αn
a
r
)
. (6.70)

The coefficients are determined from the initial conditions. Since u(r, 0) = f(r), we

have

∞∑
n=1

AnJ0

(αn
a
r
)

= f(r), =⇒ An =

∫ a

0

f(r) J0

(αn
a
r
)
r dr∫ a

0

J2
0

(αn
a
r
)
r dr

. (6.71)

Note that the weighted function r in the above integrals corresponds to the Jacobian

in double integrals from Cartesian coordinates to the polar ones. The coefficients

Bn are determined by taking the partial derivative of u(r, t) with respect to t at

t = 0,

∂u

∂t

∣∣∣∣
t=0

=

∞∑
n=1

(
An · 0 +Bn ·

cαn
a

)
J0

(αn
a
r
)

= g(r),

which leads to

Bn =

a

∫ a

0

g(r) J0

(αn
a
r
)
r dr

cαn

∫ a

0

J2
0

(αn
a
r
)
r dr

. (6.72)

Example 6.8. Motion of a circular membrane with a constant initial velocity and

a clamped edge.

Consider a clamped circular elastic membrane that is initially flat. At an in-

stance (t = 0), an external force such as a wind or something else triggered a uniform

initial velocity, say, ∂u
∂t (r, 0)

∣∣
t=0

= −100m/sec, find the motion (or deformation) of

the membrane at any time t.

Solution: In this case, we have u(r, 0) = 0 and thus, An = 0. The solution is

u(r, t) =

∞∑
n=1

a
∫ a

0

g(r) J0

(αn
a
r
)
r dr

cαn

∫ a

0

J2
0

(αn
a
r
)
r dr

 sin
cαnt

a
J0

(αn
a
r
)
.
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A Maple program that solves and simulates the motion with adjustable parameters

of c and a is attached in this book, see Fig.6.8. We can see animation of the motion

using the following command.

with(plots):

animate3d([r*cos(theta),r*sin(theta),EigenfunctionExpansion],

r=0..1,theta=0..2*Pi,t=0..40,frames=40);

Figure 6.8. Motion of a circular membrane with a constant initial velocity

and a clamped edge.

6.8 Series solution to 3D Laplace equations of BVPs

with a radial symmetry

When a domain is part of or entire a sphere, it is more convenient to use the

spherical coordinates,

x = r cosφ sin θ, 0 ≤ φ < 2π,

y = r sinφ sin θ, 0 ≤ θ < π,

z = r cos θ, r =
√
x2 + y2 + z2, 0 ≤ r.

(6.73)

A Laplace equation in the spherical coordinates has the following form,

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

(
∂2u

∂θ2
+ cot θ

∂u

∂θ
+ csc2 θ

∂2u

∂φ2

)
= 0. (6.74)
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If the problem is radially symmetric, that is, ∂2u
∂φ2 = 0, then the Laplace

equation becomes a one-dimensional problem in r that can be solved rather easily.

Here we focus on the symmetry in the latitude, that is ∂u
∂φ = 0. We consider the

Laplace equation in a sphere with a Dirichlet boundary condition,

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

(
∂2u

∂θ2
+ cot θ

∂u

∂θ

)
= 0,

u(a, θ) = f(θ), 0 < r < a, 0 ≤ θ < π.

(6.75)

We use the method of separation of variables to find a series solution to the

boundary value problem by setting u(r, θ) = R(r)Θ(θ). Then, we differentiate

u(r, θ) with respect to r and θ, respectively, and plug the partial derivatives into

the partial differential equation to get(
R′′ +

2

r
R′
)

Θ +
1

r2
(Θ′′ + cot θΘ′)R = 0,

and separate the variables to get

r2R
′′ + 2

r R
′

R
= −Θ′′ + cot θΘ′

Θ
= λ.

The equation for R(r) is an Euler’s equation

r2R′′ + 2rR′ − λR = 0,

whose solution should be bounded at r = 05. The indicial equation of the above

Euler’s equation is

s(s− 1) + 2s− λ = 0, =⇒ s1,2 =
−1±

√
1 + 4λ

2
. (6.76)

The solution to R(r) is

R(r) = C1r
s1 + C2r

s2 . (6.77)

If 1 + 4λ ≤ 0, then both roots s1 and s2 are either negative or the real part is

negative that leads to an unbounded R(r) at r = 0. Thus, the eigenvalues of λ has

to be positive. That is all that we can do about R(r) for now.

Next, we try to check the Θ(θ) equation,

Θ′′ + cot θΘ′ − λΘ = 0, λ > 0. (6.78)

5Note that the different sign in the right side of the separated equations compared with other

problems in previous examples.
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The term cot θ is unbounded at θ = 0 and θ = π, and it is not a term that we are

familiar with and can be eliminated if we set s = cos θ. Then, we have ds
dθ = − sin θ,

and

dΘ

dθ
=
dΘ

ds

ds

dθ
= − sin θ

dΘ

ds

=⇒ d2Θ

dθ2
=
d2Θ

ds2
(− sin θ)

2 − dΘ

ds
cos θ.

Plugging the relations above into the Θ(θ) equation, and applying the identity of

sin2 θ = 1− cos2 θ = 1− s2, we have

d2Θ

ds2
sin2 θ − dΘ

ds
cos θ +

cos θ

sin θ

dΘ

ds
(− sin θ)− λΘ = 0,

which leads to a simplified equation(
1− s2

) d2Θ

ds2
− 2s

dΘ

ds
− λΘ = 0, −1 < s < 1. (6.79)

The above equation is called a Legendre equation. The Sturm-Liouville eigenvalue

problem is a singular one with singularities at s = ±1, called the north and south

pole singularities. From the theory of Legendre equations and polynomials (not

discussed here), it has been shown in the literature that

λn = n(n+ 1), n = 1, 2, · · · . (6.80)

The general solutions can be written as Legendre functions

Θ(s) = C1Pn(s) + C2Qn(s), (6.81)

where Pn(s) is a Legendre polynomial of degree n which is continuous in [−1, 1];

Qn(s) is a second type of solution to the singular Legendre equation which is un-

bounded at s = −1 and s = 1. From the differential equation theory and our

knowledge on Laplace equations, the solution should be bounded at the center of

the sphere (r = 0). Thus, we conclude that the coefficient C2 = 0.

Substituting s = cos θ into the solution Θ(θ) = Pn(s) of the original equa-

tion (6.78) we get Θ(θ) = Pn(cos θ). Since we know the eigenvalues λn = n(n+ 1),

and 1 + 4λn = (2n+ 1)2, the solution to the indicial equation for R(r) is

sn,1 =
−1−

√
1 + 4λ

2
= −n, sn,2 =

−1 +
√

1 + 4λ

2
= n.

The solution Rn(r) is unbounded at r = 0 corresponding to sn,1. Thus, we have

to have Rn = rn. Therefore, the series solution in the original variable has the

following form

u(r, θ) =

∞∑
n=1

An

( r
a

)n
Pn(cos θ). (6.82)
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The way in writing this form is to get An in a simple way. The coefficients An are

determined from the boundary condition u(a, θ) = f(θ),

u(a, θ) =

∞∑
n=1

AnPn(cos θ) = f(θ).

To find the coefficients An above, we multiply a Pm(cos θ) sin θ to both sides

of the last two terms and integrate∫ π

0

f(θ)Pm(cos θ) sin θ dθ =

∞∑
n=1

An

∫ π

0

Pn(cos θ)Pm(cos θ) sin θ dθ

=

∞∑
n=1

An

∫ 1

−1

Pn(x)Pm(x) dx.

From the property of orthogonality of the eigenfunctions and∫ 1

−1

P 2
n(x) dx =

∫ π

0

P 2
n(cos θ) sin θ dθ,

we obtain

An =

∫ π

0

f(θ)Pn(cos θ) sin θ dθ∫ π

0

P 2
n(cos θ) sin θ dθ

. (6.83)

Note that the sin θ terms in the integrals above correspond to the Jacobian when

changing a volume integral from Cartesian coordinates to the spherical ones. Using

the property of Legendre polynomials, we can simplify the above expressions further

to have,

An =
2n+ 1

2

∫ π

0

f(θ)Pn(cos θ) sin θ dθ. (6.84)

We note that the Legendre polynomials can also be expressed as

Pn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
, n = 1, 2, · · · , (6.85)

from the orthogonal polynomials theory, see for example [1].

6.9 Special functions related to series solutions of

partial differential equations of BVPs

We have seen that with different coordinates, we will have some special Sturm-

Liouville eigenvalue problems, often singular, that lead to some special functions if

we use the method of separation of variables. We provide a summary in Table 6.1.



“pde˙book”

2021/4/30

page 129i
i

i
i

i
i

i
i

6.9. Special functions related to series solutions of partial differential equations of BVPs 129

T
a
b

le
6
.1

.
S

o
m

e
P

D
E

s
in

d
iff

er
en

t
co

o
rd

in
a
te

s
a
n

d
re

la
te

d
sp

ec
ia

l
S

-L
p
ro

bl
em

s
a
n

d
fu

n
ct

io
n

s.

C
o
or

d
in

at
es

P
D

E
S

-L
p

ro
b

le
m

s
E

ig
en

-p
a
ir

2D
p

ol
ar

L
ap

la
ce

eq
n

.
o
n

a
d

is
k

E
u

le
r’

s
eq

u
a
ti

o
n

0
<
r
<
a

∂
2
u

∂
r2

+
1 r

∂
u

∂
r

=
0

r2
R
′′

+
rR
′
−
n

2
R

=
0

R
(r

)
=
C
n

( r a

) n +
C̄
n

( r a

) −n
2D

p
ol

ar
W

av
e

eq
n

.
o
n

a
d
is

k
B

es
se

l’
s

eq
u

a
ti

o
n

B
es

se
l’

s
fu

n
ct

io
n

s

0
<
r
<
a

∂
u

(r
,t

)

∂
t

=
c2
( ∂2

u

∂
r2

+
1 r

∂
u

∂
r

)
x

2
y
′′

+
x
y
′
+

(x
2
−
p

2
)y

=
0

y
(x

)
=
C

1
J
p
(x

)
+
C

2
Y
p
(x

)

3D
sp

h
er

e
L

ap
la

ce
eq

n
.

o
n

a
sp

h
er

e
L

eg
en

d
re

eq
u

a
ti

o
n

(−
1
<
s
<

1
)

L
eg

en
d

re
fu

n
.

(λ
n

=
n

(n
+

1
))

0
<
r
<
a

∂
2
u

∂
r2

+
2 r

∂
u

∂
r

+
1 r2

( ∂2
u

∂
θ2

+
co

t
θ
∂
u

∂
θ

) =
0

( 1
−
s2
) d2 Θ d

s
2
−

2s
d
Θ d
s

+
λ

Θ
=

0
Θ

(s
)

=
C

1
P
n
(s

)
+
C

2
Q
n
(s

)



“pde˙book”

2021/4/30

page 130i
i

i
i

i
i

i
i

130 Chapter 6. Series solutions of PDEs of boundary value problems

6.10 Exercises

E6.1 Apply the method of separation of variables to solve the 1D wave equation
∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L with

∂u

∂x
(0, t) = 0, u(L, t) = 0,

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x).

(a). Let u(x, t) = X(x)T (t), derive the equations for X(x) and T (t).

(b). Solve the related Sturm-Liouville eigenvalue value problem.

(c). Find the series solution to the 1D wave equation.

(d). Apply the derived series solution formula to solve the BVP when f(x) =

|x|, g(x) = sin 4xπ, with L = 2, c = 3. Plot or sketch the series solution,

and the partial sums SN (x, t) (assuming N is large) at t = 4.

E6.2 Carry out the method of separation of variables to solve the heat equation

∂u

∂t
= c2

∂2u

∂x2
, 0 < x < L, u(x, 0) = f(x).

Also plot or sketch the initial u(x, 0) = f(x), the series solution, and the

partial sums SN (x, t) assuming N is large enough at t = 2.5.

(a). L = π, c = 1, u(x, 0) = 78,
∂u

∂x
(0, t) = 0, u(L, t) = 0.

(b). L = π, c = 3, u(x, 0) = 30 sin(10x), u(0, t) = 0, u(L, t) = 0.

(c). L = π, c = 2, u(0, t) = 0,
∂u

∂x
(L, t) = 0,

u(x, 0) =

 33x if 0 < x ≤ π/2,

33(π − x) π/2 < x < π.

E6.3 Find the steady state solution (SSS) of the heat equation
∂u

∂t
= c2

∂2u

∂x2
, 0 <

x < L, u(x, 0) = f(x):

(a). c = 3, u(0, t) = 0, u(1, t) = 100, f(x) = x2 sinx.

(b). c =
√

2, u(0, t) = 100, u(π, t) = 100, f(x) = log(1 + x2) sinx.
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E6.4 Solve the heat equation
∂u

∂t
= c2

∂2u

∂x2
, 0 < x < L, u(x, 0) = f(x) with

non-homogeneous boundary conditions.

(a). L = 1, c = 1, f(x) = 30 sin(πx), u(0, t) = 100, u(1, t) = 0.

(b). L = π, c = 1, f(x) =

 33x if 0 < x ≤ π/2,

33(π − x) π/2 < x < π,
u(0, t) =

100, u(π, t) = 50.

E6.5 Solve the Laplace equation on [0, 1] × [0, 2] with the following boundary

conditions and find its maximum value and minimum values of the solutions.

(a). u(0, y) = 0, u(1, y) = y(2− y), u(x, 0) = 0, u(x, 2) = 0.

(b). u(0, y) = 0, u(1, y) = 0, u(x, 0) = sin(πx), u(x, 2) = 0. Hint: A normal

mode solution.

E6.6 Solve the Laplace equation on [0, a] × [0, b] with the following boundary

conditions: u(0, y) = 0,
∂u

∂x
(a, y) = 0, u(x, 0) = 0, u(x, b) = f(x).

E6.7 Solve the elliptic partial differential equation on [0, a]× [0, b]

∂2u

∂x2
+ α2 ∂

2u

∂y2
= 0, (x, y) ∈ R,

u(x, b) = f2(x), u(x, 0) = 0, u(0, y) = 0, u(a, y) = 0.

Hint: Change one of independent variable.

E6.8 Given
∂u

∂t
= u+

∂2u

∂x2
.

(a). Classify the following PDE.

(b). Solve the boundary value problem of the PDE on the domain 0 < x < π

with

u(0, t) = 0,
∂u

∂x
(π, t) = 0, u(x, 0) = f(x).

(c). Find the steady state solution if it exists.

E6.9 Consider the heat equation.

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, 0 < x < 2, 0 < y < 1,

u(x, y, 0) = sin(x2 + y2),

u(x, 0, t) = e−t
2

,
∂u

∂y
(x, 1, t) = 0, u(0, y, t) = 0, u(2, y, t) = sin y.
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132 Chapter 6. Series solutions of PDEs of boundary value problems

Write down the PDE and boundary condition(s) of the steady state solu-

tion.

To solve the steady state solution, do the following:

(a). Let the solution be u(x, y) = X(x)Y (y), derive the ODEs for X(x) and

Y (y).

(b). Solve the Sturm-Liouville problem for Y (y). Find the corresponding

solution X(x).

(c). Find the series solution for the steady state solution (series solution).

Hint: the solution to the equation y′′ − λ2y = 0 can be written as y(x) =

C1 cosh(λx) + C2 sinh(λx).

E6.10 Find the steady state solution of the 2D heat equation,

∂u

∂t
= ∆u, x2 + y2 < 3,

(a): u(3, θ, t) = 100− e−t
2

cos t, u(r, θ, 0) = r sin θ. Hint: a normal mode.

(b): u(3, θ, t) =

 1 if 0 < θ ≤ π,

0 π < x < 2π.
u(r, θ, 0) = log(r2 + 1) cos(7.2θ).

E6.11 The solution to the Laplace equation ∆u = 0 on an annulus 0 < a < r < b

with the boundary condition u(a, θ) = f(θ), u(b, θ) = g(θ), 0 < θ < 2π can

be written as

u((r, θ) = A0 +B0 log r +

∞∑
n=1

{(
Anr

n +
Bn
rn

)
cosnθ

+

(
Cnr

n +
Dn

rn

)
cosnθ

}
.

Can you derive the formulas for the coefficients? Also try to solve the problem

when a = 1, b = 2, f(θ) = 1, and g(θ) = sin θ.

E6.12 Redo the problem of Example 6.8 with ∂u
∂r u(r, 0) = 0, and (a): u(r, 0) = 10;

(b): u(r, 0) = r(1− r).

E6.13 Solve the radial symmetric 3D Laplace equation on a sphere with a = 1 , and

(a): u(a, θ) = 1; (b): u(a, θ) = sin θ cos θ.
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E6.14 (Extra Credit): Using the method of separation of variables to solve the

following boundary value problem,

∂2u

∂t2
+ αu = c2

∂2u

∂x2
, 0 < x < L,

∂u

∂x
(0, t) = 0, u(L, t) = 0,

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x),

where α is a constant.
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Chapter 7

Fourier and Laplace

transforms

We have seen the power of various Fourier series in solving boundary value problems

of partial differential equations and their applications. If we let L in the Fourier

series goto ∞, and replace the summation with integration, then we will have the

Fourier transform. The Fourier transform is very useful in terms of theoretical

analysis, obtaining analytic solutions of certain PDEs especially those defined in

the entire space.

7.1 From the Fourier series to Fourier integral

representations

Give a function f(x) ∈ L2(−L,L), we already know the Fourier series expansion

f(x) =

∞∑
n=0

{
an cos

nπx

L
+ bn sin

nπx

L

}
.

=

∞∑
n=0

{
1

L

(∫ L

−L
f(t) cos

nπt

L
dt

)
cos

nπx

L
+

1

L

(∫ L

−L
f(t) sin

nπt

L
dt

)
sin

nπx

L

}
.

Let nπ
L = ω or 1

L = 1
π
w
n = 1

π∆ω. The expression above becomes

f(x) =

∞∑
n=0

{
1

π

(∫ L

−L
f(t) cosωtdt

)
cosωx+

1

π

(∫ L

−L
f(t) sinωtdt

)
sinωx

}
∆ω.

Let L→∞, we get

f(x) =

∫ ∞
0

(A(ω) cosωx+B(ω) sinωx) dω, (7.1)

135
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136 Chapter 7. Fourier and Laplace transforms

where

A(ω) =
1

π

∫ ∞
−∞

f(t) cosωt dt, cosine transform of f(x); (7.2)

B(ω) =
1

π

∫ ∞
−∞

f(t) sinωt dt, sine transform of f(x). (7.3)

The expression (7.1) is called the Fourier integral representation of f(x) which

converges to f(x) if f(x) is continuous at a point x; and to (f(x−) + f(x+))/2 if

f(x) is piecewise continuous.

If we put cosine and sine transforms together and use the trig-identity cos(α−
β) = cosα cosβ + sinα sinβ, we derive the Fourier transform of f(x) below.

f(x) =
1

π

∫ ∞
0

∫ ∞
−∞

f(t) (cosωt cosωx+ sinωt sinωx) dt dω

=
1

π

∫ ∞
0

∫ ∞
−∞

f(t) cos(x− t)dt dω

=
1

2π

∫ ∞
0

∫ ∞
−∞

f(t)
(
eiω(x−t) + eiω(x+t)

)
dt dω

=
1

2π

∫ ∞
0

∫ ∞
−∞

f(t)eiω(x−t)dt dω − 1

2π

∫ 0

−∞

∫ ∞
−∞

f(t)eiω̄(x−t)dt dω̄

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(t)ei(ω−t)dt dω

=
1√
2π

∫ ∞
−∞

eiωx
1√
2π

∫ ∞
−∞

f(t)e−iωtdt dω

=
1√
2π

∫ ∞
−∞

f̂(ω)eiωxdω.

The Fourier transform of f(x) is defined as

F(f(x)) = f̂(ω) =
1√
2π

∫ ∞
−∞

f(x)e−iωxdx. (7.4)

From the derivation above, we also have.
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The Inverse Fourier transform is

F−1(f̂(ω)) = f(x) =
1√
2π

∫ ∞
−∞

f̂(ω)eiωxdω. (7.5)

Example 7.1. Find the Fourier transform of f(x) = e−a|x|, where a > 0 is a

constant.

The Fourier transform can be found directly from the definition.

f̂(ω) =
1√
2π

∫ ∞
−∞

e−a|x|e−iωxdx

=
1√
2π

∫ 0

−∞
eaxe−iωxdx+

1√
2π

∫ ∞
0

eaxe−iωxdx

=
1√
2π

∫ ∞
0

e−axeiωxdx+
1√
2π

∫ ∞
0

eaxe−iωxdx

=
1√
2π

e(iω−a)x

iω − a

∣∣∣∣∞
0

+
1√
2π

−e(iω+a)x

iω + a

∣∣∣∣∞
0

=
1√
2π

(
1

a+ iω
+

1

a− iω

)

=

√
2

π

a

a2 + ω2
.

Example 7.2. Find the Fourier transform of a step function f(x) =

 1 if |x| < a,

0 if |x| > a
,

where a > 0 is a constant.

The Fourier transform can be found directly from the definition.

f̂(ω) =
1√
2π

∫ ∞
−∞

f(x)e−iωxdx

=
1√
2π

∫ a

−a
e−iωxdx = − 1√

2π

e−iωx

iω

∣∣∣∣a
−a

= − 1

ωi
√

2π

(
e−iωa − eiωa

)
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138 Chapter 7. Fourier and Laplace transforms

= − 1

ωi
√

2π

(
cosωa− i sinωa− (cosωa+ i sinωa)

)
=

2√
2π

sinωa

ω
=

√
2

π

sinωa

ω
.

Note that f̂(ω) has a removable singularity at ω = 0 since

f̂(0) = lim
ω→0

√
2

π

sinωa

ω
= a

√
2

π
.

Example 7.3. Find the Fourier transform of a point source function f(x) = δ(x),

a special function defined only in the sense of distribution below,∫
f(x)δ(x− α)dx = f(α) (7.6)

if α is in the domain of the integration.

The Fourier transform can be found directly from the definition,

f̂(ω) =
1√
2π

∫ ∞
−∞

δ(x)e−iωxdx =
1√
2π
.

Note that the point source function δ(x) is called a Dirac delta function, which

can be regarded as a ‘limit’ of the following non-negative function whose graph about

the x-axis has a unit area

δε(x) =


1− |x|
ε

if |x| ≤ ε,

0 Otherwise.

(7.7)

It is easy to show that

lim
ε→0

∫
f(x)δε(x− α)dx = f(α).

Such a δε(x) is not unique, for example, the following function plays the same role

δε(x) =


1

4ε

(
1 + cos

πx

2ε

)
if |x| ≤ 2ε,

0 Otherwise.

(7.8)

The Dirac delta function can be regarded as the ‘weak derivative’ of the Heaviside

function

H(x) =

{
1 if x > 0,

0 Otherwise.
(7.9)
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7.1. From the Fourier series to Fourier integral representations 139

7.1.1 Properties of the Fourier transform

It is obvious that if α and β are two complex or real constants, then

F (αf(x) + βg(x)) = αF(f(x)) + βF(g(x)). (7.10)

Theorem 7.1. Let û be the Fourier transform of a function u ∈ L2, then

∂̂u

∂x
= iωû, (7.11)

∂̂û

∂ω
= −ixu, (7.12)

̂̂u = u. (7.13)

Proof: From the definition, we have

̂̂u =
1√
2π

∫ ∞
−∞

eiωxû dω = u. (7.14)

For the partial derivatives ∂u
∂x , first from the definition, we have

∂u

∂x
=

1√
2π

∫ ∞
−∞

∂̂u

∂x
eiωxdω.

On the other hand, if we take the partial derivative of (7.14) with respect to x

assuming that we can switch the integration and the partial derivative, we get

∂u

∂x
=

1√
2π

∫ ∞
−∞

∂

∂x

(
eiωxû(ω)

)
dω

=
1√
2π

∫ ∞
−∞

iωeiωxû(ω) dω.

The inside expressions should be the same, that is, ∂̂u∂x = iωû.

If we switch the position between ω and x, u and û in the expression above,

we get

∂û

∂ω
=

1√
2π

∫ ∞
−∞

e−iωx
∂̂û

∂ω
dx,

and by differentiating the Fourier transform

û(ω) =
1√
2π

∫ ∞
−∞

u(x)e−iωxu dx
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with respect to ω we get

∂û

∂ω
=

1√
2π

∫ ∞
−∞
−ixe−iωxu dx.

Thus we get ∂̂û
∂ω = −ixu, which completes the proof.

It is easy to generalize the equality to high order derivatives to get,

∂̂mu

∂xm
= (iω)m û (7.15)

i.e., we can remove derivatives using the Fourier transform.

Parseval’s relation: Under the Fourier transform, we have ‖û‖2 = ‖u‖2 or∫ ∞
−∞
|û|2dω =

∫ ∞
−∞
|u|2dx . (7.16)

7.1.2 The convolution theorem of the Fourier transform

For some functions, it may be easier to obtain the inverse Fourier transform using

the convolution theorem:

F−1[F (ω)G(ω)] = f ∗ g =

∫ ∞
−∞

f(y)g(x− y)dy, (7.17)

where f ∗ g is called the convolution of f and g. Thus, we also have

F
[∫ ∞
−∞

f(y)g(x− y)dy

]
= F (ω)G(ω). (7.18)

We show an example below about an application of the convolution theorem. More

examples can be found in the area of signal processing.

Example 7.4. Solve for y(x) from the integral equation,∫ ∞
−∞

y(ω)dω

(x− ω)2 + a2
=

1

x2 + b2

assuming that b > a > 0.

Solution: The left hand side looks like a convolution. Note that∫ ∞
−∞

e−iωx

x2 + b2
dx =

∫ 0

−∞

e−iωx

x2 + b2
dx+

∫ ∞
0

e−iωdx

x2 + b2
dx

=

∫ ∞
0

eiωx + e−iωx

x2 + b2
dx =

π

b
e−ωb.
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7.2. Use the Fourier transform to solve PDEs 141

We take the Fourier transform of the integral equation on both sides, that is,

F {y(x)}F
{

1

x2 + b2

}
= F

{
1

x2 + b2

}
and apply the convolution theorem to get

Y (ω)
π

a
e−ωa =

π

b
e−ωb =⇒ Y (ω) =

a

b
e−(b−a)ω.

After the inverse Fourier transform, we have

y(x) =
(b− a)a

bπ (x2 + (b− a)2)
.

7.2 Use the Fourier transform to solve PDEs

The Fourier transform is a powerful tool to solve some partial differential equations,

particularly for some Cauchy problems as illustrated below.

Example 7.5. Consider the Cauchy problem below,

ut + aux = 0 , −∞ < x <∞, t > 0 , u(x, 0) = u0(x),

which is an advection equation, or a one-way wave equation. This is a Cauchy

problem since the spatial variable is defined in the entire space and t ≥ 0. Applying

the Fourier transform to the equation and the initial condition, we get

ût + âux = 0, or ût + aiωû = 0, û(ω, 0) = û0(ω),

which is an initial value problem of an ordinary differential equation. The solution

is

û(ω, t) = û(ω, 0) e−iaωt = û0(ω) e−iaωt

for û(ω). The solution to the original advection equation is obtained from the

inverse Fourier transform,

u(x, t) =
1√
2π

∫ ∞
−∞

eiωx û0(ω) e−iaωt dω

=
1√
2π

∫ ∞
−∞

eiω(x−at) û0(ω) dω

= u(x− at, 0) = u0(x− at)
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142 Chapter 7. Fourier and Laplace transforms

which is the same as that in Chapter 2. It is noted that the solution to the advection

equation does not change shape, but simply propagates along the characteristic line

x− at = 0, and the Parseval’s identity,

‖u‖2 = ‖û‖2 = ‖û(ω, 0)e−iaωt‖2 = ‖û(ω, 0)‖2 = ‖u0‖2 .

Example 7.6. Consider

ut = βuxx, −∞ < x <∞, t > 0, u(x, 0) = u0(x), lim
|x|→∞

u = 0 ,

which is a heat (or diffusion) equation. Once again applying the Fourier transform

to the PDE and the initial condition, we obtain

ût = β̂uxx, or ût = β(iω)2û = −βω2û, û(ω, 0) = û0(ω).

The solution of this ODE is

û(ω, t) = û(ω, 0) e−βω
2t .

Consequently, if β > 0, from the Parseval’s relation, we have

‖u‖2 = ‖û‖2 = ‖û(ω, 0)e−βω
2t‖2 ≤ ‖u0‖2 .

Actually, it can be seen that limt→∞ ‖u‖2 = 0. That is why the second order

partial derivative term is called a diffusion or dissipation term. The L2 norm is

often regarded as an energy in some physical applications. In a heat equation, the

energy is decreasing with the time. If β < 0, then limt→∞ ‖u‖2 = ∞, the partial

differential equation is dynamically unstable. The partial differential equation is

called a backward heat equation, which has application in financial mathematics

with terminal (backward) boundary conditions.

Example 7.7. Dispersive waves. Consider

ut =
∂2m+1u

∂x2m+1
+
∂2mu

∂x2m
+ l.o.t.,

where m is a non-negative integer. For the simplest case ut = uxxx, we have

ût = β̂uxxx, or ût = β(iω)3û = −iω3û ,

and the solution of this initial value problem of the ODE above is

û(ω, t) = û(ω, 0) e−iω
3t.
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Therefore

‖u‖2 = ‖û‖2 = ‖û(ω, 0)‖2 = ‖u(ω, 0)‖2 ,

and the solution to the original PDE can be expressed as

u(x, t) =
1√
2π

∫ ∞
−∞

eiωx û0(ω) e−iω
3t dω

=
1√
2π

∫ ∞
−∞

eiω(x−ω2t) û0(ω) dω.

Evidently, the Fourier component with wave number ω propagates with velocity ω2,

so waves mutually interact but there is no diffusion.

Example 7.8. PDEs with higher order derivatives. Consider

ut = α
∂2mu

∂x2m
+
∂2m−1u

∂x2m−1
+ l.o.t.,

where m is a non-negative integer. The Fourier transform yields

ût = α(iω)2mû+ · · · =

 −αω
2mû+ · · · if m = 2k + 1,

αω2mû+ · · · if m = 2k,

hence

û =

 û(ω, 0) e−αiω
2mt + · · · if m = 2k + 1,

û(ω, 0) eαiω
2mt + · · · if m = 2k.

From the above relations, we can know whether they partial differential equations

are dynamically stable or not. For example, ut = uxx and ut = −uxxxx are dynam-

ically stable, whereas ut = −uxx and ut = uxxxx are dynamically unstable.

7.3 The Laplace transform

The Fourier transform is for functions that are defined in the entire space (−∞,∞)

while the Laplace transform is for functions that are defined in half space (0,∞)

such as time variable t > 0. The Laplace transform for a function f(t) is defined as

L(f)(s) = F (s) =

∫ ∞
0

f(t)e−st dt, (7.19)

where s is in the complex number set. A necessary condition for the existence of

the integral is that f must be locally integrable on [0,∞). The Laplace transforma-

tion from the time domain to the frequency, also referred as s-domain, transforms
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ordinary differential equations to algebraic equations and convolutions to multipli-

cations.

Example 7.9. Find the Laplace transform of f(t) = 1, f(t) = t, f(t) = eαt, and

f(t) = sin(ωt).

We apply the Laplace transform formula to get:

L(1)(s) =

∫ ∞
0

1 · e−st dt = −1

s
e−st

∣∣∣∣∞
t=0

=
1

s
.

L(t)(s) =

∫ ∞
0

t · e−st dt =

(
− t
s
e−st − e−st

s2

)∣∣∣∣∞
t=0

=
1

s2
.

L(eαt)(s) =

∫ ∞
0

eαt · e−st dt = − 1

s− a
e−(s−a)t

∣∣∣∣∞
t=0

=
1

s− a
,

L(sin(ωt)(s) =

∫ ∞
0

sin(ωt) · e−st dt =
ω

ω2 + s2
.

The last one is from the integral table: sin(ωt) · e−stdt = −e−st s sin(ωt)+ω cos(ωt)
s2+ω2 .

One of the most important properties of Laplace transform is that we can get

rid of one derivatives from the following identities:

L(f ′) = sL(f)− f(0), (7.20)

L(f (n)) = snL(f)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0). (7.21)

Proof: If we repeatedly apply the integration by parts, then we have

L(f (n)(t)(s) =

∫ ∞
0

f (n)(t) · e−st dt = f (n−1)(t) · e−st
∣∣∣∞
t=0

+

∫ ∞
0

sf (n−1)(t) · e−st dt

= −f (n−1)(0) + f (n−2)(t) · se−st
∣∣∣∞
t=0

+

∫ ∞
0

sf (n−3)(t) · s2e−st dt

= −f (n−1)(0)− sf (n−2)(0) + · · ·+
∫ ∞

0

snf(t) · e−st

= −f (n−1)(0)− sf (n−2)(0)− · · · sn−1f(0) + snL(f)(s).

The first identity is the directly application of the above.
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7.3.1 The inverse Laplace transform and the convolution

theorem

The definition of the inverse Laplace transform is quite technical and involves in-

tegrations on the complex plane. Intuitively, if the Laplace transform a function

f(t) is F (s), i.e. L(f)(s) = F (s), then f(t) is called an inverse Laplace transform

of F (s). We write symbolically L−1(F )(s) = f(t). Technically, the inverse Laplace

transform can be expressed as

L−1(F )(s) = f(t) =
1

2πi
lim
T→∞

∫ γ+∞T

γ−iT
F (s)est dt. (7.22)

where the integration is done along the vertical line Re(s) = γ in the complex

plane. In practice, computing the complex integral can be done by the Cauchy

residue theorem. Note that not all functions have inverse Laplace transform.

The inverse Laplace formula is not very useful due to its complexity. Fortu-

nately, most of useful and practical inverse Laplace transforms can be found in the

literature and on the Internet. For some functions, it is easier to obtain the inverse

Laplace formula using the convolution theorem:

L−1[F (s)G(s)] = f ∗ g =

∫ t

0

f(y)g(t− y)dy, (7.23)

where f ∗ g is called the convolution of f and g. Thus, we also have

L
[∫ t

0

f(y)g(t− y)dy

]
= F (s)G(s). (7.24)

Example 7.10. Find the inverse Laplace transform of
2

s2(s2 + 4)
.

Solution: We set F (s) =
2

s2
, thus f(t) = 2t, and G(s) =

1

s2 + 4
, thus

g(t) =
sin(2t)

2
. The convolution of f ∗ g is

∫ t

0

2(t− y) sin(2y)dy =
t

2
− sin(2t)

4
.

Thus, we conclude

L−1[F (s)G(s)] = L−1

[
2

s2(s2 + 4)

]
=

∫ t

0

2(t− y) sin(2y)dy =
t

2
− sin(2t)

4
,

which is the inverse Laplace transform.
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Similar to the Fourier transform, the Laplace transform can be used to solve

differential equations by eliminating derivatives of one variable. For a linear ordi-

nary differential equation, the Laplace transform reduces the ODE to an algebraic

equation, which can then be solved by algebra. The original differential equation

can then be solved by applying the inverse Laplace transform.

Example 7.11. Use the Laplace transform to solve the initial value problem:

y′′(t) + y(t) = 2, y(0) = 0, y′(0) = 1.

Solution: We apply the Laplace transform to the ODE L[y′′+y] = L(2), and

apply property for derivatives to obtain

s2Y (s)− sy(0)− y′(0) + Y =
2

s
.

Apply the initial conditions, we get an algebraic equation for Y (s)(
s2 + 1

)
Y (s)− 1 =

2

s
, =⇒

Y (s) =
1

s2 + 1
+

2

s(s2 + 1)
=

1

s2 + 1
+

2

s
− 2s

s2 + 1
.

By looking at a mathematical handbook for the Laplace transform we get the so-

lution y(t) = sin t + 2 − 2 cos t. It is easy to check that y(t) satisfies the ODE and

the initial conditions.

7.4 Exercises

E7.1 Show that if f(x) is an even function, then its Fourier transform can be

expressed as the cosine transform

F =
1√
2π

∫ ∞
0

f(ω) cosωxdx.

Similarly, if f(x) is an odd function, find the similar relation in terms of the

sine transform

F =
1√
2π

∫ ∞
0

f(ω) sinωxdx.
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E7.2 (a): Find the Fourier transform of a pulse defined as:

P (x) =

 1 if − 1
2 ≤ x ≤

1
2 ,

0 otherwise;

and a triangular pulse, defined as:

T (x) =

 1− |t| if −1 ≤ x ≤ 1,

0 otherwise;

(b): Show that T (x) = P ∗ P , That is, the convolution of P (x) and itself.

(c): Use the convolution theorem to find the Fourier transform

F {T} = F {P ∗ P} = F {P} · F {P} = C
sin2(πω)

ω2
,

Find the constant C.

E7.3 Using the convolution theorem to show that the solution to the integral equa-

tion

y(x) = g(x) +

∫ ∞
−∞

y(t)r(x− t)dt

is

y(x) =
1√
2π

∫ ∞
−∞

(
G(ω)

1−R(ω)

)
eiωxdω,

where G(ω) and R(ω) are the Fourier transform of g(x) and r(x), respectively.

E7.4 Find the Laplace transformation of the following functions.

(a). f(t) = C.

(b). f(t) = cos(ωt).

(c). f(t) = sinh(t).

(d). f(t) = cosh(t).

E7.5 Find the inverse Laplace transformation of the following

(a). F (s) =
1

s3
.

(b). F (s) =
1

s− a
.

(c). F (s) =
1

s2 + a2
.
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Chapter 8

Numerical solution

techniques

Analytic solutions techniques are important for solving and understanding differen-

tial equations. We should try our best effort to get analytic solutions so that we can

analyze and understand the solution behaviors. Unfortunately, many problems are

difficult, if not impossible to find analytic solutions, particularly for partial differen-

tial equations. Thus, we need to find different ways to solve and analyze differential

equations. Series solution techniques have been shown to be effective in solving and

analyzing differential equations. Nevertheless, Series solution techniques can be dif-

ficult for high dimensional problems and have limitations on boundary conditions.

The rapid development in modern computers has provided another powerful

tool in solving differential equations, which is called numerical solutions of differ-

ential equations. Nowadays, many applications such as weather forecasts, space

shuttles lunches, robots, heavily depend on super-computer simulations. There are

tons of books, software packages, numerical methods, online classes for solving dif-

ferential equations. It is totally a new area of study and research. Here, we just

introduce a few examples so that interested readers can get a glance of the pow-

erful tool and can pursue further if needed. We can see that for some problems,

numerical approaches maybe much simpler than series or other analytical solution

techniques. Note also that numerical methods can also help theoretical study of

differential equations.

There are many different numerical methods that can be applied to solve

differential equations, for examples, finite different methods, finite element meth-

ods, finite volume methods. Usually different methods have advantages/limitations

compared with other ones for solving differential equations and applications.

While Maple is a symbolic package, Matlab is a multi-paradigm numerical

149
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150 Chapter 8. Numerical solution techniques

computing environment and proprietary programming language developed by Math-

Works. One can call Maple directly from the Matlab environment. Matlab has a

variety of numerical methods built in such as linear algebra, numerical approxima-

tions, spline library, and many toolboxes for solving various mathematical problems

through computing. Note that, Matlab is a simple and easy tool to use. In some

sense, it is more like a super calculator. Nevertheless, it is not the most efficient

way for large scale simulations and super-computing.

For ordinary differential equations or systems of ordinary differential equations

with prescribed initial conditions, particularly, the first order system of ODEs with

an initial condition,

dy

dt
= F(t,y), y(t0) = y0, (8.1)

where y0 is a known initial condition, we can use the Matlab ODE Suite toolbox to

solve the problem numerically, see for example, [11]. The toolbox is powerful and

often enough for many practical applications. For a high order ordinary differential

equation, often it is easier to convert the ODE to a first order system as the above

standard form.

In this chapter, we briefly explain finite difference methods (FDM) for some

differential equations of boundary value problems. We refer the interested reader to

[7, 8, 10, 14, 15] for introductions on this topic. In a finite difference method, instead

of finding solution everywhere, we seek approximate solutions at a finite number

of points, called grid points. The second aspect of a finite difference method is to

approximate derivatives using function values at grid points so that a differential

equation becomes an algebraic system of equations. Some commonly used finite

difference formulas are listed below

u′(x) = lim
h→0

u(x+ h)− u(x)

h
≈ u(x+ h)− u(x)

h
, (8.2)

u′(x) = lim
h→0

u(x+ h)− u(x− h)

2h
≈ u(x+ h)− u(x− h)

2h
, (8.3)

u′′(x) = lim
h→0

u(x− h)− 2u(x) + u(x+ h)

h2
≈ u(x+ h)− 2u(x) + u(x+ h)

h2
(8.4)

if h is small enough.

The simplest method for solving (8.1) may be the forward Euler’s method

that uses a time marching approach to obtain an approximate solution at the time

interval ∆t starting from the initial condition as

yn+1 − yn

∆t
= f (tn,yn) , n = 0, 1, · · · . (8.5)
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The method is first order accurate, that is, ‖yn−y(tn,y(tn))‖ ≤ C∆t. The scheme

is conditionally stable meaning that we can not take very large ∆t. We can give

a reasonable guess of ∆t < 1. Theoretically, the method is stable if we choose ∆t

such that |∆t λi
(
Df
Dy (t0,y(t0))

)
| ≤ 1 for all i’s, where λi

(
Df
Dy (t0,y(t0))

)
are the

eigenvalues of the Jacobi matrix of f .

It is quite easy to use the Matlab ODE Suite to solve a system of first order

ODEs of an initial value problem and visualize the results. The Matlab ODE Suite

is a collection of five user friendly finite difference codes for solving initial value

problems given by first-order systems of ordinary differential equations and plotting

their numerical solutions. The three codes ode23, ode45, and ode113 are designed to

solve non-stiff problems and the two codes ode23s and ode15s are designed to solve

both stiff and non-stiff problems. The mathematical and software developments

and analysis are given in [11]. The Matlab ODE Suite is based on Runge-Kutta

methods and can choose time step size adaptively.

As a demonstration, we solve the non-dimensionalized Lotka-Volterra predator-

prey model of the following system,

y′1 = y1 − y1 y2,

y′2 = −ay2 + y1 y2,

y1(0) = p1, y2(0) = p2,

(8.6)

where p1 and p2 are two constant, y1(t) is the population of a prey while y1(t) is the

population of a predator. Under certain conditions, predator and prey can co-exit.

We define the system in a Matlab function called prey prd.m whose contents

are

function yp = prey_prd(t,y)

global a

k = length(y); yp = zeros(k,1);

yp(1) = y(1) - y(1)*y(2) ;

yp(2) = -a*y(2) + y(1)*y(2);

To solve the problem, we write a Matlab script file called prey prd drive.m whose

contents are the following.

global a

a = 0.5; t0 = 0; y0 = [0.01 0.01]; tfinal=200;

[t y] = ode23s(’prey_prd’,[t0,tfinal],y0);
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152 Chapter 8. Numerical solution techniques

y1 = y(:,1); y2=y(:,2); % Extract solution components.

figure(1); subplot(211); plot(t,y1); title(’Population of prey’)

subplot(212); plot(t,y2); title(’Population of predator’)

figure(2); plot(y1,y2) % Phase plot

xlabel(’prey’); ylabel(’predator’); title(’phase plot’)

In Figure 8.1, we plot the computed solution for the parameters a = 0.5, the

initial data is y1(0) = y2(0) = 0.01. The final time is T = 200. The left plot are the

solution of each component against time. We can observe that the solution changes

rapidly in some regions indicating the stiffness of the problem. The right plot is the

phase plot, that is, the plot of one component against the other. The phase plot

is more like a closed curve in the long run indicating the existence of the limiting

cycle of the model.
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Figure 8.1. Plots of the solution of the prey-predator model from t = 0

to t = 200 in which we can see the prey and predator co-exist. (a), solution plots

against time; (b), the phase plot in which limit cycle can be seen.

8.1 Finite difference methods for two-point boundary

value problem3

We start with a one-dimensional Sturm-Liouville problem of the following,

u′′(x) = f(x), 0 < x < L, u(0) = ua, u(1) = ub,
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to illustrate the general procedure using a finite difference method as follows. Note

that when ua = 0, ub = 0, and f(x) = λu, we have a Sturm-Liouville eigenvalue

problem.

8.1.1 Outline of a finite difference method for a two point BVP

1 Generate a grid. A grid, or a mesh, is a finite set of points on which we seek

an approximate solution to the differential equation. For example, we can use

a uniform Cartesian grid

xi = i h, i = 0, 1, · · ·n, h =
1

n
.

2 Represent the derivative by a finite difference formula at every grid point where

the solution is unknown, to get an algebraic system of equations. At each grid

point xi we replace the differential equation in the model problem by

u(xi − h)− 2u(xi) + u(xi + h)

h2
= f(xi) + error,

where the error is called the local truncation error.

Thus, we obtain the finite difference solution (an approximation) to u(x) at

all xi as the solution Ui ≈ u(xi) (if it exists) of the following linear system of

algebraic equations:

ua − 2U1 + U2

h2
= f(x1)

U1 − 2U2 + U3

h2
= f(x2)

· · · · · · = · · ·
Ui−1 − 2Ui + Ui+1

h2
= f(xi)

· · · · · · = · · ·
Un−3 − 2Un−2 + Un−1

h2
= f(xn−2)

Un−2 − 2Un−1 + ub
h2

= f(xn−1).

Note that the finite difference approximation at each grid point involves so-

lution values at three grid points, i.e., at xi−1, xi, and xi+1. The set of these

three grid points is called the finite difference stencil.
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3 Solve the system of algebraic equations to get an approximate solution at each

grid point. The system of algebraic equations can be written in the matrix

and vector form (Ax = b),

− 2
h2

1
h2

1
h2 − 2

h2
1
h2

1
h2 − 2

h2
1
h2

. . .
. . .

. . .

1
h2 − 2

h2
1
h2

1
h2 − 2

h2





U1

U2

U3

...

Un−2

Un−1


=



f(x1)− ua/h2

f(x2)

f(x3)

...

f(xn−2)

f(xn−1)− ub/h2


(8.7)

Note that it can be shown that the coefficient matrix is a symmetric negative

definite matrix and it is invertible. There are various computer packages

designed to solve such a system of equations.

4 Implement and debug the computer code. Run the program to get the out-

put. Analyze and visualize the results (tables, plots etc.).

5 Estimate errors. We can show that the finite difference method is consistency

and stability, which implies the convergence of the finite difference method.

In fact, we can show the convergence is pointwise, i.e.,

lim
h→0
‖u(xi)− Ui‖∞ = 0. (8.8)

8.1.2 A Matlab code for the model problem

Below is a Matlab function called two point.m for the model problem. We use this

Matlab function to illustrate how to convert the algorithm to a computer code.

function [x,U] = two_point(a,b,ua,ub,f,n)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This matlab function two_point solves the following two-point %

% boundary value problem: u’’(x) = f(x) using the centered finite %

% difference scheme. %

% Input: %
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% a, b: Two end points. %

% ua, ub: Dirichlet boundary conditions at a and b. %

% f: external function f(x). %

% n: number of grid points. %

% Output: %

% x: x(1),x(2),...x(n-1) are grid points %

% U: U(1),U(2),...U(n-1) are approximate solution at grid points %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

h = (b-a)/n; h1=h*h;

A = sparse(n-1,n-1);

F = zeros(n-1,1);

for i=1:n-2,

A(i,i) = -2/h1; A(i+1,i) = 1/h1; A(i,i+1)= 1/h1;

end

A(n-1,n-1) = -2/h1;

for i=1:n-1,

x(i) = a+i*h;

F(i) = feval(f,x(i));

end

F(1) = F(1) - ua/h1;

F(n-1) = F(n-1) - ub/h1;

U = A\F;

return

%%%%%--------- End of the program -------------------------------------

We can call the Matlab function two point directly in a Matlab command



“pde˙book”

2021/4/30

page 156i
i

i
i

i
i

i
i

156 Chapter 8. Numerical solution techniques

window. A better way is to put all Matlab commands in a Matlab script file (called

an M-file), referred to as main.m here. The advantage of using a script file is to

keep a record, and can also be re-visited or modified whenever we want.

To illustrate, suppose the interval of integration is [0, 1], f(x) = −π2 cos(πx),

u(0) = 0 and u(1) = −1. A sample Matlab M-file is then as follows.

%%%%%%%% Clear all unwanted variables and graphs.

clear; close all

%%%%%%% Input

a=0; b=1; n=40;

ua=1; ub=-1;

%%%%%% Call the solver: U is the FD solution at the grid points.

[x,U] = two_point(a,b,ua,ub,’f’,n);

%%%%%%%%%%%%%%%%%%% Plot and show the error %%%%%%%%%%%%%%%%%%%

plot(x,U,’o’); hold % Plot the computed solution

u=zeros(n-1,1);

for i=1:n-1,

u(i) = cos(pi*x(i));

end

plot(x,u) %%% Plot the true solution at the grid points on the same plot.

%%%%%%% Plot the error

figure(2); plot(x,U-u)

norm(U-u,inf) %%% Print out the maximum error.
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It is easy to check that the exact solution of the boundary value problem is cos(πx).

If we plot the computed solution as defined by the values at the grid points (use

plot(x,u,’o’), and the exact solution represented by the solid line in Figure 8.2 (a),

the difference at the grid points is not too evident. However, if we plot the difference

of the computed solution and the exact solution, which we call the error, we see

there is indeed a small difference of O(10−3), cf, Figure 8.2 (b). Note that, even if

we do not know the true solution, we still can conclude that the error is O(h2) by

theoretical analysis.
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Figure 8.2. (a) The plot of the computed solution (little ’o’s), and the

exact solution (solid line). (b) The plot of the error.

Note that in Matlab, if use [D,V ] = eig(A), we get approximate eigenvalues

in the diagonal matrix D, and corresponding eigenvectors in V .

8.2 Finite difference methods for 1D wave equations

of BVPs

Since one dimensional advection equations are easy to solve, we explain the finite

difference method for one-dimensional wave equations with a source term,

∂2u

∂t2
= c2

∂2u

∂x2
+ f(x, t), 0 < x < L, 0 < t < T,

u(0, t) = g1(t), u(L, t) = g2(t),

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x), 0 < x < L,

(8.9)

It is not so easy to get analytic or series solution to the problem but it is quite

simple using a finite difference method. As in the previous section, we set up a
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space grid first by selecting a parameter n, say n = 100, to get a space step size

h = L
n , and a mesh,

xi = ih, i = 0, 1, · · · , n.

Thus, we have x0 = 0, xn = L. Next we select a time step size ∆t and get a grid in

time,

tk = k∆t, k = 0, 1, · · · ,m, such that n∆t = T .

Then we have a finite difference scheme to solve the initial-boundary value problem

U0
i = f(xi), U1

i = U0
i + ∆t g(xi), i = 1, 2, · · · , n− 1, initial setup;

Uk+1
0 = g1(tk+1), Uk+1

n = g2(tk+1), boundary conditions;

Uk−1
i − 2Uki + Uk+1

i

(∆t)2
= c2

Uki−1 − 2Uki + Uki+1

h2
+ f(xi, tk),

i = 1, 2, · · · , n− 1; k = 1, 2, · · · ,m.
(8.10)

We can choose an m such that ∆t ≤ h

|c|
to ensure the stability of the finite difference

method. Then we obtain a finite difference approximation to the solution at the

final time T as

Umi ≈ u(xi, T ), i = 1, 2, · · ·n− 1. (8.11)

8.3 Finite difference methods for 1D heat equations

Similarly, we can use a finite difference method to solve a one-dimensional heat

equation with a source term,

∂u

∂t
= c2

∂2u

∂x2
+ f(x, t), 0 < x < L, 0 < t < T,

u(0, t) = g1(t), u(L, t) = g2(t),

u(x, 0) = f(x), 0 < x < L.

(8.12)

It is not so easy to get analytic or series solution to the problem but it is quite

simple using a finite difference method. As in the previous section, we set up a

space grid first by selecting a parameter n, say n = 100, to get a space step size

h = L
n , and a mesh,

xi = ih, i = 0, 1, · · · , n.
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Thus, we have x0 = 0, xn = L. Next we select a time step size ∆t and get a grid in

time,

tk = k∆t, k = 0, 1, · · · ,m, such that n∆t = T .

Then we have a finite difference scheme to solve the initial-boundary value problem

U0
i = f(xi), i = 1, 2, · · · , n− 1, initial setup;

Uk+1
0 = g1(tk+1), Uk+1

n = g2(tk+1), boundary conditions;

Uk+1
i − Uki

∆t
= c2

Uki−1 − 2Uki + Uki+1

h2
+ f(xi, tk),

i = 1, 2, · · · , n− 1; k = 0, 1, 2, · · · ,m.

(8.13)

We can choose an m such that ∆t ≤ h2

2c2
to ensure the stability of the finite

difference method. Note that, in this case, the time step restriction is severe. There

are variety of better methods around, see for example [7, 8, 14]. In the end, we

obtain a finite difference approximation to the solution at the final time T as

Umi ≈ u(xi, T ), i = 1, 2, · · ·n− 1. (8.14)

8.4 Finite difference methods for 2D Poisson

equations

We can also use a finite difference method to solve 2D or 3D Poisson equations

or elliptic PDEs rather easily if the PDEs are defined on regular domains such as

rectangles in 2D and cubics in 3D. After a finite difference discretization, a boundary

value problem will be changed to a system of algebraic equations. We use a Poisson

equations on a square to explain the approach.

Let us now consider the following Poisson equation with a Dirichlet boundary

condition:

uxx + uyy = f(x, y), (x, y) ∈ Ω = (a, b)× (c, d), (8.15)

u(x, y)|∂Ω = u0(x, y) . (8.16)

If f ∈ C(Ω), then the solution u(x, y) ∈ C2(Ω) exists and it is unique. An analytic

solution is often unavailable. A finite difference method is explained below.
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160 Chapter 8. Numerical solution techniques

• Step 1: Generate a grid. For example, a uniform Cartesian grid can be gen-

erated as,

xi = a+ ihx, i = 0, 1, 2, · · · ,m, hx =
b− a
m

, (8.17)

yj = c+ jhy, j = 0, 1, 2, · · · , n, hy =
d− c
n

. (8.18)

In seeking an approximate solution Uij at the grid points (xi, yj) where u(x, y)

is unknown, there are (m− 1)(n− 1) unknowns.

• Step 2: Represent the partial derivatives with FD formulas involving the func-

tion values at the grid points. For example, if we adopt the three-point central

FD formula for second-order partial derivatives in the x- and y-directions re-

spectively, then

u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)

(hx)2
+
u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)

(hy)2

≈ fij , i = 1, · · ·m− 1, j = 1, · · ·n− 1, (8.19)

where fij = f(xi, yj).

We replace the exact solution values u(xi, yj) at the grid points with the

approximate solution values Uij obtained from solving the linear system of

algebraic equations, i.e.,

Ui−1,j + Ui+1,j

(hx)2
+
Ui,j−1 + Ui,j+1

(hy)2
−
(

2

(hx)2
+

2

(hy)2

)
Uij = fij ,

i = 1, 2, · · · ,m− 1, j = 1, 2, · · · , n− 1 .

(8.20)

The FD equation at the grid point (xi, yj) involves five grid points in a five-

point stencil, (xi−1, yj), (xi+1, yj), (xi, yj−1), (xi, yj+1), and (xi, yj). The grid

points in the FD stencil are sometimes labeled as east, north, west, south, and

the center in the literature. The center (xi, yj) is called the master grid point,

where the FD equation is used to approximate the partial differential equation.

• Solve the linear system of algebraic equations (8.20), to get the approximate

values for the solution at all of the grid points.

• Error analysis, implementation, visualization etc.
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8.4.1 The matrix-vector form of the FD equations

In solving the algebraic system of equations by a direct method such as the Gaus-

sian elimination or some sparse matrix technique, knowledge of the matrix-vector

structure is important, although less so for an iterative solver such as the Jacobi,

Gauss-Seidel or SOR(ω) methods. In the matrix-vector form AU = F, the un-

known U is a 1-D array. From 2-D Poisson equations the unknowns Uij are a 2-D

array, but we can order it to get a 1-D array. We may also need to re-order the FD

equations, and it is a common practice to use the same ordering for the equations

as for the unknown array. There are two commonly used orderings, namely, the

natural ordering, a natural choice for sequential computing; and red-black ordering,

considered to be a good choice for parallel computing.

1 2 3

4 5 6

7 8 9

1 2

3

4
5

6

7 8

9

Figure 8.3. The natural ordering (left) and the red-black ordering (right).

The natural row ordering

In the natural row ordering, we order the unknowns and equations row by row.

Thus the k-th FD equation corresponding to (i, j) has the following relation:

k = i+ (m− 1)(j − 1), i = 1, 2, · · · ,m− 1, j = 1, 2, · · · , n− 1, (8.21)

see the left diagram in Figure 8.3.

Referring to Figure 8.3, suppose that hx = hy = h, m = n = 4. Then there

are nine equations and nine unknowns, so the coefficient matrix is 9 by 9. To

write down the matrix-vector form, use a 1-D array x to express the unknown Uij
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162 Chapter 8. Numerical solution techniques

according to the ordering, we should have

x1 = U11, x2 = U21, x3 = U31, x4 = U12, x5 = U22,

x6 = U32, x7 = U13, x8 = U23, x9 = U33 .
(8.22)

Now if the algebraic equations are ordered in the same way as the unknowns, the

nine equations from the standard central FD scheme using the five-point stencil are

Eqn.1 :
1

h2
(−4x1 + x2 + x4) = f11 −

u01 + u10

h2

Eqn.2 :
1

h2
(x1 − 4x2 + x3 + x5) = f21 −

u20

h2

Eqn.3 :
1

h2
(x2 − 4x3 + x6) = f31 −

u30 + u41

h2

Eqn.4 :
1

h2
(x1 − 4x4 + x5 + x7) = f12 −

u02

h2

Eqn.5 :
1

h2
(x2 + x4 − 4x5 + x6 + x8) = f22

Eqn.6 :
1

h2
(x3 + x5 − 4x6 + x9) = f32 −

u42

h2

Eqn.7 :
1

h2
(x4 − 4x7 + x8) = f13 −

u03 + u14

h2

Eqn.8 :
1

h2
(x5 + x7 − 4x8 + x9) = f23 −

u24

h2

Eqn.9 :
1

h2
(x6 + x8 − 4x9) = f33 −

u34 + u43

h2
.

The corresponding coefficient matrix is block tridiagonal,

A =
1

h2


B I 0

I B I

0 I B

 , (8.23)

where I is the 3× 3 identity matrix and

B =


−4 1 0

1 −4 1

0 1 −4

 .
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In general, for an n+ 1 by n+ 1 grid we obtain

A =
1

h2



B I

I B I

. . .
. . .

. . .

I B


n2×n2

, B =



−4 1

1 −4 1

. . .
. . .

. . .

1 −4


n2×n2

.

Since −A is symmetric positive definite and weakly diagonally dominant, the coef-

ficient matrix A is a non-singular matrix, and hence the solution of the system of

the FD equations is unique.

The matrix-vector form is useful to understand the structure of the linear

system of algebraic equations, and as mentioned it is required when a direct method

(such as Gaussian elimination or a sparse matrix technique) is used to solve the

system. However, it can sometimes be more convenient to use a two-parameter

system, especially when an iterative method is preferred but also as more intuitive

and to visualize the data.

8.4.2 The SOR(ω) iterative method

As we can see that the linear system of equations using a finite difference method

to solve the Poisson equation is large (O(n2 × n2)) but sparse with only O(n2)

non-zero entries. One can use a simple iterative method, such as the Jacobi, Gauss-

Seidel, or Successive Over Relaxation (SOR(ω)) method to solve the linear system

of equations. Below is a description of the SOR(ω) iterative method given an initial

guess U
(0)
ij and hx = hy = h so M = N . In the k-th iteration, k = 0, 1, · · · , until

the iteration converges, we set U
(k+1)
ij = U

(k)
ij , then

U
(k+1)
ij = (1− ω)U

(k)
ij +

ω

4

(
U

(k+1)
i−1,j + U

(k+1)
i+1,j + U

(k+1)
i,j−1 + U

(k+1)
i,j+1 − h

2f(xi, yj)
)

i, j = 1, 2, · · · , n.
(8.24)

The method works if 0 < ω < 2. When ω = 1, the iterative method is called the

Gauss-Seidel iterative method. The optimal omega for Poisson/Laplace equation is

ωopt =
2

1 + sin(πh)
∼ 2

1 + π/n
. (8.25)
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A commonly use the stopping criterion is

max
ij

∣∣∣U (k+1)
ij − U (k)

ij

∣∣∣
max
ij

∣∣∣U (k+1)
ij

∣∣∣ < tol, say, tol = 10−6. (8.26)

Brief summary

In this chapter, we presented a couple of examples using computers to solve dif-

ferential equations. We can see that sometimes numerical methods do provide an

effective alternative way in solving differential equations. We note that computa-

tional mathematics is a branch of mathematics that requires systematic study such

as convergence, stability, accuracy, efficiency, reliability, etc., before we can take

advantages of modern computer powers including artificial intelligence (AI).

8.5 Exercises

E8.1 Use a finite difference method to solve the advection equation:

∂u

∂t
+ a(x, t)u = f(x, t), 0 < x < L, a(x, t) ≥ 0,

u(x, 0) = u0(x), u(0, t) = g(t).

Try your method with u(x, t) = sin(x−2t) for 0 < t ≤ 4, a(x) = x, 0 < x < 2,

with n = 32, 64, 128. Other parameters and conditions can be determined

from the give u(x, t).

E8.2 Use a finite difference method to solve the wave equation:

∂2u

∂t2
= c2

∂2u

∂t2
+ f(x, t), 0 < x < L,

u(x, 0) = u0(x),
∂u

∂t
= v(x), u(0, t) = g1(t), u(L, t) = g2(t).

Try your method with u(x, t) = sin(x − 2t) for 0 < t ≤ 4, c = 5, 0 < x < 2,

with n = 32, 64, 128. Other parameters and conditions can be determined

from the give u(x, t).

E8.3 Use a finite difference method to solve the heat equation:

∂u

∂t
= a(x, t)

∂2u

∂t2
+ f(x, t), 0 < x < L, a(x, t) ≥ 0,

u(x, 0) = u0(x), u(0, t) = g1(t), u(L, t) = g2(t).
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E8.4 Solve the Laplace equation on a unit square assuming that the true solution

is (a): u(x, t) = ex sin y, (b): u(x, t) = sin(k1πx) cos(k1πy). Use the source

term and Dirichlet boundary condition from the given u(x, y). Try different

k1 and k2.
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Appendix A

ODE Review and Other

Useful Information

A.1 First order ODEs

For the readers’ convenience, we review solutions or methods for solving some or-

dinary differential equations. We start with first order linear and homogeneous

ODEs,

dy

dx
+ p(x)y(x) = 0. (A.1)

For a more general ODE a(x) dydx + b(x)y(x) = 0 we can divide by a(x) assuming it

is not zero to get dy
dx + b(x)

a(x)y(x) = 0. If a(x) = 0 at some places, the differential

equation is singular since there is no derivative involved.

If we rewrite the ODEs as

dy

y
= −p(x)dx, (A.2)

and integrate on both sides, we get∫
dy

y
= −

∫
p(x)dx+ C, =⇒ log |y(x)| = C −

∫
p(x)dx.

The solution can be written as

y(x) = Ce−
∫
p(x)dx. (A.3)

For a non-homogeneous ODE

dy

dx
+ p(x)y(x) = g(x), (A.4)

167
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168 Appendix A. ODE Review and Other Useful Information

we can multiply a function µ(x), called an integrating factor so that the ODE can

become something like d
dx (sth.) = f(x) and can be integrated easily. In other words,

after multiply an integrating factor to get

µ(x)
dy

dx
+ µ(x)p(x)y(x) = g(x)µ(x). (A.5)

we wish the left hand side becomes d
dx (µ(x)y(x)) = g(x)µ(x). Then the solution

would be

y(x) =
1

µ(x)

(∫
g(x)µ(x)dx+ C1

)
.

The left hand side in (A.5) is the same as the left hand side of the ODE which leads

to

µy′ + µ′y = µy′ + µpy, or µ′ = µp.

We get µ(x) = C2e
∫
p(x)dx. Plugging this into (A.6), we get the solution

y(x) =
1

C2
e−
∫
p(x)dx

(∫
g(x)C2e

∫
p(x)dx + C1

)
= e−

∫
p(x)dx

(
C1

C2
+

∫
g(x)e

∫
p(x)dx

)
= e−

∫
p(x)dx

(
C +

∫
g(x)e

∫
p(x)dx

)
.

(A.6)

Example A.1. Solve y′(x)− y(x) = 2.

In this example, p(x) = −1, g(x) = 2, the solution is

y(x) = e
∫

1dx

(
C +

∫
2e
∫

(−1)dx

)
= ex

(
C − 2e−x

)
.

Note that, for this problem we can also use an undetermined coefficients method to

find the particular solution yp = −2. The solution then is the sum of the particular

solution and the general solution to the homogeneous problem y′(x)− y(x) = 0.

A.2 Second order linear and homogeneous ODEs

with constant coefficients

The ordinary differential equation has the form,

ay′′(x) + b(x)y′ + cy = 0. (A.7)
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The corresponding characteristic polynomial is defined as

aλ2 + bλ+ c = 0 (A.8)

whose roots can be real or complex numbers depending on the discriminant,

b2 − 4ac


> 0 there are two distinct roots λ1, λ2;

= 0 there is one double root, λ1 = λ2 = λ;

< 0 there are two complex roots λ1 = α+ βi, λ2 = α− βi, i =
√
−1.

The solution to the ODE are

• b2 − 4ac > 0, y(x) = C1e
λ1x + C2e

λ2x.

• b2 − 4ac = 0, y(x) = C1e
λx + C2xe

λx.

• b2 − 4ac < 0, y(x) = eαx (C1 cosβx+ C2 sinβx).

A.3 Useful trigonometric formulas

There formulas below are useful in Fourier analysis, orthogonal expansions using

trigonometric functions, and series solutions to partial differential equations.

sinα cosβ =
1

2
(sin(α+ β) + sin(α− β)) (A.9)

cosα sinβ =
1

2
(sin(α+ β)− sin(α− β)) (A.10)

cosα cosβ =
1

2
(cos(α+ β) + cos(α− β)) (A.11)

sinα sinβ = −1

2
(cos(α+ β)− cos(α− β)) (A.12)

sin2 α =
1− cos 2α

2
; cos2 α =

1 + cos 2α

2
(A.13)

sin 2α = 2 sinα cosα; cos 2α = cos2 α− sin2 α. (A.14)

A.4 ODE solutions to the Euler’s equations

A second order Euler’s ordinary differential equation has the following form

x2y′′ + αxy′ + βy = 0. (A.15)
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An nth order Euler’s ordinary differential equation has the following form

xn
dny

dxn
+ an−1x

n−1 d
n−1y

dxn−1
+ · · · a1xy + a0y = 0. (A.16)

For a first order Euler equation xy′ + αy = 0, we have y′

y = −αx and the

solution is log |y(x)| = −α log |x|+ C or y = C|x|α.

For a second order Euler’s equation, we look for the solution of the form of

y(x) = xr, y′(x) = rxr−1 and y′(x) = r(r − 1)xr−2. The ODE then becomes

x2r(r − 1)xr−2 + αxrxr−1 + βxr = 0, (A.17)

which leads to an indicial equation

r(r − 1) + αr + β = 0. (A.18)

There are three cases corresponding to different general solutions.

1 Two distinct roots, r1 and r2. The solution then is

y(x) = C1|x|r1 + C2|x|r2 .

2 One repeated root r1. The solution is

y(x) = C1|x|r1 + C2 (log |x|) |x|r1 .

3 A complex pair r = a± ib, the solution is

y(x) = |x|a (C1 cos(b log |x|) + C2 sin(b log |x|)) .

Example A.2. Solve the ordinary differential equation x2y′′ + 2xy′ − 6y = 0.

Solution: The indicial equation is r(r − 1) + 2r − 6 = 0, or r2 + r − 6 =

(r + 3)(r − 2) = 0. Its roots are r1 = −3 and r2 = 2. The general solution is

y(x) = C1|x|−3 + C2|x|2 =
C1

|x|3
+ C2x

2.

Example A.3. Solve the ordinary differential equation x2y′′ + 3xy′ + 10y = 0.

Solution: The indicial equation is r(r− 1) + 3r+ 10 = 0, or r2 + 2r+ 10 = 0.

The solutions are r = −1± 3i. The general solution is

y(x) = |x|−1 (C1 cos(3 log |x|) + C2 sin(3 log |x|)) .
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Example A.4. Solve the ordinary differential equation x2y′′ + 3xy′ + y = 0.

The indicial equation is r(r− 1) + 3r+ 1 = 0, or r2 + 2r+ 1 = 0. There is one

double root r = −1. The general solution is

y(x) = C1|x|−1 + C2 (log |x|) |x|−1.
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Appendix B

Introduction to Maple

Maple is a computer software package produced by Maplesoft, Inc in Waterloo,

Ontario, Canada. It is a programming language as well as a powerful computer

algebra system that is well-suited for use in a course on partial differential equations.

Here we provide the student with an introduction that should suffice for the various

uses (computations, graphing and animations) that are needed throughout this

textbook.

173
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B.1 The Maple Worksheet

One ”works with Maple” in what is referred to as a Maple worksheet. Below is

a screen shot of a Maple worksheet that illustrates the two types of “Lines” in a

Maple worksheet: (1) command lines, and (2) text lines.

Figure B.1. Maple command and text lines

In the worksheet pictured above the first line with the words ”This is a Maple

COMMAND line”; is in fact a ”command” line. Command lines are also known

as Execution groups in Maple. Note that command lines are indicated by the

> symbol. We insert Maple commands into a command line to compute, or to

graph, or perhaps to create an animation. We will provide examples of all of these

operations below. Since the words in the first line are enclosed in quotation marks,

Maple considers ”This is a Maple COMMAND line” to be a maple string, and when

”enter” is pressed, spits out the words of the string in blue as shown.

The second line has the same words as the first line, but without quotation

marks. Upon execution Maple replies with the warning:

Error, missing operator or ‘; ‘

This is because maple is looking for operators, such as ∗, /, + between the words. In

the third line we’ve inserted some operators between the words just to illustrate that

Maple now considers the individual words to be valid Maple objects and dutifully

tries to perform the (meaningless) operations. Please also note that each line in a



“pde˙book”

2021/4/30

page 175i
i

i
i

i
i

i
i
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Maple worksheet should end with a semi-colon (output shown) or a colon (command

executed by output suppressed).

Finally, the last line with text in it is a text line. There is no > symbol

indicating a textline. No commands can be executed inside a textline. Textlines

are only for text.

SUMMARY:. Maple command lines are indicated with the symbol >, and

one enters Maple commands in command lines. Pressing ”enter” after inserting a

command in a command line will result in Maple executing the command. Maple

text lines are not indicated using the symbol > - rather they are simply white

spaces ready for text input.
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Adding extra command lines

If can happen that you are working at some point in a Maple worksheet, and you

realize that you need to have another command line at that point in your work. To

insert a new Execution Group at a point in the worksheet, put the cursor at the

spot where you want to make the insertion. Then with your mouse click on ”insert”

in the top menu, then click on Execution Group in that menu, and then choose

between ”before cursor” and ”after cursor”. See Figure B.2.

Figure B.2. Adding a new command line

Multiple commands in a single execution group

If can often happen that you want to define and then execute several commands in

sequence. You can, of course, simply put your sequence of commands in separate

command lines and then execute them one at a time. On the other hand, you

can input mutliple commands in a single execution group. You create room in an

execution group by entering shift-return from the key board. This will insert 1

extra line. More lines in the same execution group will be produced each time you

press shift-return on the key board. In Figure B.2 above the last execution group

has 3 Maple commands in one execution group.
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Adding extra text lines

If can happen that you are working at some point in a Maple worksheet, and you

realize that you need to have another text line at that point in your work. To insert

a new text line at a point in the worksheet, put the cursor in a command line at

the spot where you want to make the insertion. Then with your mouse click on

”insert” in the top menu and then click on Text in that menu. Maple will convert

the command line to a text line.
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B.2 Arithmetic and Algebraic operations in Maple

Maple is a computational workhorse that is capable of computing almost anything a

PDE-student needs. The 4 basic operations of addition, subtraction, multiplication

and division are denoted by commands similar to the commands on many hand-held

calculators. They are:

Addition Place the + sign between two things you want to add together. For

example, 5 + 6 .

Subtraction To subtract A from B use B −A .

Multiplication To multiple A and B use A ∗B

Division To divide A by B use A/B

It is important to use proper syntax when using operations in combinations. Maple

uses parentheses ( ), and only parentheses, to organize these operations when used

together. That is to say one may not use curly braces { }, or square braces [ ] to

organize these operations. This is because Maple uses { } to define sets, and [ ]

to define lists. The difference between a Maple set and a Maple list is that the

elements of a set are unique, while elements of a list need not be unique. Moreover,

lists are ordered so that the order you define elements of a list is preserved. Maple

will often reorder the elements of a set using an ordering determined by Maple. Set

Figure B.3 to see how these work.
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Figure B.3. Operations, sets and lists

Notice in the examples that to enter π in a Maple worksheet you must use Pi

and not pi. Also notice that in defining A to be a set, the number 13 is entered

twice but only shows up once, since elements of a set are unique. On the other

hand, in defining B to be a list, the order is preserved and 13 appears twice.
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B.2.1 The Assignment Operator

Also illustrated in Figure B.3 is the use of the assignment operator. The assign-

ment operator is denoted by the combination of a colon followed by an equal sign,

namely := preceded by the name you want to assign to what is on the right-hand-

side. The letter A is assigned to the set with elements 13, -4, 88, -5 and 2, 13 while

the letter B is assigned to the list with ordered elements 13, -4, 88, -5 and 2, 13.

Once you assign a value to a name, Maple remembers that assignment until you

close the worksheet or issue a ”restart” command. This is ilustrated in Examples 3

and 4 in Figure B.3 above.

B.2.2 Special symbols in Maple

Below is a short list of the special symbols used in a Maple worksheet.

1 π. The symbol π, namely the ratio of the circumference of a circle to its

diameter, is entered in a Maple worksheet as Pi.

2 e. The real number that is denoted as e, is by definition that real number for

which the following limit holds

lim
h→0

eh − 1

h
= 1

It evaluates to 10 digits to the number 2.718281828 as shown in Figure B.4.

Note the first line in the figure, showing that e is just e in a Maple worksheet.

To evaluate it we must use exp(1).

Figure B.4.

3 The complex number
√
−1 is denoted by the capitol letter I in the Maple

worksheet.
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B.2.3 Getting Started with Maple

It is time to try out these ideas in a Maple worksheet. First download the file

A-maple-worksheet and save it to disk. It is a Maple worksheet verison of this pdf.

Next start up Maple and use the file command to open the worksheet, as shown in

the figure below. You’ll need to find the file you saved on your disk. When the file

opens you can follow along with the Maple worksheet and this pdf.

Figure B.5. Opening a Maple worksheet

B.3 Functions in Maple

In working with Fourier series and eigenfunction expansions it is useful to be able

to define certain functions to help with the calculations. The syntax for defining a

function and assigning a name to the function in Maple is illustrated in Figure B.6.
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Figure B.6.

In the first line in the figure we are ”assigning f to be the function that sends

x to the value (x2 + 1) exp(2 ∗ x)”. The ”send to” is denoted by −>, which is a

”dash” followed by the ”greater than” symbol >. Once the assignment is made,

we call the function using standard function notation. In the second line in Figure

B.6 we write f(x) to ”evaluate f at x” to produce the value of the function at an

arbitrary x. In the third line we we write f(2) to ”evaluate f at the number 2” to

get the value shown, namely 5e4.

B.3.1 Built in functions in Maple

Maple provides a number of predefined functions to work with in the Maple work-

sheet. A short list of the useful predefined functions are

1 exp. The exponential function is called in the Maple worksheet as shown in

Figure B.7.
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Figure B.7.

REMARK:. It is important to note that one must use the exponential

function using the exp() format. Using the notation ex in a Maple worksheet

denotes the letter e with exponent x, and does not represent the exponential

function.

2 ln. The natural logarithm function is called in the Maple worksheet as shown

in Figure B.8.

Figure B.8.

3 The trig and inverse trig functions sin, cos,tan,cot,sec,csc, and their inverses

arcsin, arccos,arctan,arccot,arcsec,arccsc are predefined in Maple.

4 The hyperbolic trig and inverse hyperbolic trig functions sinh, cosh,tanh,coth,

sech,csch, and their inverses arcsinh, arccosh,arctanh,arccoth,arcsech,

arccsch are predefined in Maple.

5 evalf(). Maple’s command that evaluates valid expressions to N digits using

floating point arithmetic is the evalf() command. Here N is a positive in-
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teger and valid expressions are numbers, for example rational numbers, valid

symbols, for example π, and Maple functions such as those listed above. The

syntax to evaluate a valid expression to N decimal places is

[
>evalf(”valid expression”, N)

As an example, Pi evaluates to 100 digits to the number

Figure B.9.

B.3.2 Plotting functions in a Maple worksheet

Consider the function f := x→ sin(3πx). The domain is the entire real line, and to

display the graph of f over an interval, say x = a . . . b, we use the plot command.

The syntax for our plot is

[
> plot

(
f(x),x = a..b,options

)
where ”options” refers to the plot options available in Maple, including color and

thickness. The color option is quite useful. For example, to color a curve blue we

use the command

[
> plot

(
f(x),x = a..b, color=blue

)
To plot two functions f(x) and g(x) on the same plot, we group f(x) and g(x)

together into the list [f(x), g(x)] and use this list as the first argument in the plot

command.

[
> plot

(
[f(x),g(x)],x = a..b, color=[blue,red]

)
REMARK:. Because lists are ordered, Maple knows that in executing the above

command the curve y = f(x), the first element in the input list [f(x), g(x)], should

should be plotted in blue, the first element in the color list .color = [blue, red].
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Similarly, the curve y = g(x) should be plotted in red. See Figure B.10 where the

option on ”thickness=n” of the curves is added, where n is a non-negative integer.

Figure B.10.
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B.3.3 Animating plots

Maple has the ability to produce animations of plots. For example, consider the

function f defined by

[
> f := (x, t)− > sin(x− t)

for 0 ≤ x ≤ 2π and 0 ≤ t ≤ 10. Looking at the plot of f in the xy-plane, we

see a single sine wave moving from left to right across the screen as t advances.

A few snap shots are shown in Figure B.11. However in the maple worksheet the

animation is live. Download the Maple worksheet containing this example HERE.

Figure B.11.

The command to produce the animation is contained in the plots package

and is the animate() command. It is called with the format

[
> with(plots);

[
> animate(plot,[sin(x-y),x=0..2*Pi], t=0..10);

When these commands are executed Maple responds with a picture of the plot

as shown in Figure B.12
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Figure B.12.

Clicking on the plot with the cursor will cause Maple to create the ”movie player

controls” shown inside the red circle in Figure B.12. Click on the play button I to

play the animation.

B.3.4 Differentiating functions in a Maple worksheet

The syntax for differentiating a function g that has been defined in the worksheet

is

[
> diff(g(x),x)

See Figure B.13. g is defined in the first line, and the second line is there to

emphasize that you must use g(x) and not g when working with the function. The

derivative of g is given in the third line in the figure.

A second derivative uses the notation

[
> diff(g(x),x,x)
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Differentiating multivariable functions

There is a similar notation for partial derivatives of functions of more than one

variable. Suppose that f is defined in the worksheet as a function of x and y as in

the fourth input line in Figure B.13. In the execution group beginning with the

fifth input line, the following partial derivatives are computed.

∂f

∂x
,

∂2f

∂y∂x
,

∂f

∂y
,

The second and third input lines in Figure B.13 illustrate an important point. Once

g is assigned as a function, you cannot use g as the argument of the diff(), or any

other Maple command; you must use g(x) for the values of g at x.

Figure B.13.
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B.3.5 Integrating functions in a Maple worksheet

Suppose f is a continuous function of one variable defined in a Maple worksheet.

See, for example, the definition of f(x) = x cos(x) in Figure B.14. The syntax for

integrating f over an interval x = a..b using the int() command is[
> int

(
f(x),x=a..b

)
Choosing a specific interval, say x = 2..10 we can integrate f over this interval as

shown in the, second input line in Figure B.14. Note that in the third line in the

figure that ”int” has been changed to ”Int”, which is referred to as the ”inert

version of int” in that the command is simply printed out and not executed. This

is useful for the student to make certain that ”what was typed in is actually what

you wanted typed in and not a mistake.”

Figure B.14.
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B.3.6 Functions defined on integers

A standard computation in Fourier series and eigenfunction expansions is to define

a function which is to be evaluated on integers. Maple again uses the notation[
> f :=x→ expression in x

but simply replaces the variable x with a variable n which will be used as an integer.

An example is shown in Figure B.15 where the name a is assigned to the function

that sends an integer n to the value of the integral of the function f(x) cos(nπx/L)

from x = 0 to x = L = 1. The values a(n) for n = 1, 4, 10 are then printed out.

Figure B.15.

B.3.7 Partial sums

It is useful in dealing with infinite series to create partial sum approximations

of the full series. Thus for the infinite series

S :=

∞∑
i=1

f(i)

the N th-partial sum, N ≥ 1, is the finite sum SN given by

SN =

N∑
i=1

f(i)
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For example, a Fourier sine series of of a function f(x) on the interval [0, L] has

the form

FS =

∞∑
n=1

b(n) sin(nπx/L) (B.1)

where the coefficients are defined by

b := n→ 2

L

∫ L

0

f(x) sin(nπx/L)dx. (B.2)

The N th-partial sum, N ≥ 1, for such a Fourier sine series is simply

SN =

N∑
n=1

b(n) sin(nπx/L)

In the Maple worksheet we use the sum() command to create partial sums of

functions defined on integers. The syntax is, for a function f defined on integers,[
> sum

(
f(i), i=1..N

)
;

where N is a positive integer. In Figure B.16 the partial sums for a Fourier sine

series of a function is illustrated, followed by a plot of the partial sums SN for

N = 1, 2, 3, 20 in Figure B.17.

Figure B.16.
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Figure B.17. Plot of partial sums SN for n = 1,2,3,20
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B.3.8 Maple’s repetition statement

To quote from Maple’s help page, The repetition statement provides the ability to

execute a statement sequence repeatedly, either for a counted number of times (using

the for...to clauses) or until a condition is satisfied (using the while clause). Both

forms of clauses can be present simultaneously. . It strings together the words for

... by ... to ... while”. Below is an example call to the repetition statement.[
> TheValue := 1;

for i from 1 by 1 while TheValue < 1.0 ∗ 1019

do

“i”=i;

TheValue:= evalf(exp(i));

end do;

In this example we are asked to find the first positive integer i such that

exp(i) > 1.0 ∗ 1019. In the first line the variable name TheValue is first initialized

to the value 1. Then in the loop we evaluate the exponential function exp(i) at the

integer i, where i starts at 1 and increments by 1. The loop will stop once TheValue

surpasses the value 1.0 ∗ 1019 due to the phrase while TheValue < 1.0 ∗ 1019.

Notice that in Figure B.18 the output is shown for each step since the line

end do; ends with a semi-colon. For large calculations in a loop you may want to

suppress the output until the loop ends. This is illustrated in Figure B.19 where

end do: ends with a colon. We then see the answer. The end of the loop prints out

which integer (44) with the line The i, and then with the line TheValue prints

out the 10-digit approximation 1.285160011× 1019 of exp(44).
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Figure B.18.

Figure B.19. Loop with output

suppressed

B.4 Computing sine, cosine, and full Fourier series

B.4.1 Fourier sine series

The Fourier sine series (SS) of a function f(x) on the interval [0, L] has the form

SS =

∞∑
n=1

b(n) sin(nπx/L) (B.3)

where the coefficients are defined by

b := n→ 2

L

∫ L

0

f(x) sin(nπx/L)dx , n = 1, 2, . . . (B.4)

The N th-partial sum, N ≥ 1, for such a Fourier sine series is simply

SS Partial Sum =

N∑
n=1

b(n) sin(nπx/L)

Thus to compute the Fourier SS of a given function f(x) we need:
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1 . The function f(x), and

2 The number L defining the domain x = 0 . . . L of the problem.

In Figure B.19 we show how to define the Fourier series partial sum function for

the function ex on the interval [0,1]. In the figure the definition of the SS coefficients

function b(n) as well as the definition of the SS Partial Sum function are shown.

Then the plot is shown for ex and the 20-term partial sum approximation of the

sine series for ex.

Figure B.19.

B.4.2 Fourier cosine series

The Fourier cosine series (CS) of a function f(x) on the interval [0, L] has the

form

CS =
a0

2
+

∞∑
n=1

a(n) cos(nπx/L) (B.5)



“pde˙book”

2021/4/30

page 196i
i

i
i

i
i

i
i

196 Appendix B. Introduction to Maple

where the coefficients are defined by

a := n→ 2

L

∫ L

0

f(x) cos(nπx/L)dx , n = 0, 1, 2, . . . (B.6)

The N th-partial sum, N ≥ 1, for such a Fourier cosine series is simply

CS Partial Sum =
a0

2
+

N∑
n=1

a(n) cos(nπx/L)

Thus to compute the CS of a given function f(x) we need:

1 . The function f(x), and

2 The number L defining the domain x = 0 . . . L of the problem.

In Figure B.20 we show how to define the Fourier cosine series partial sum

function for the function x3 − 2x2 + x + 1 on the interval [0,1]. In the figure

the definition of the CS coefficients function a(n) as well as the definition of the

CS Partial Sum function are shown. Then the plot is shown for x3 − 2x2 + x + 1

and the 5-term partial sum approximation of the cosine series for x3 − 2x2 + x+ 1.
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Figure B.20.

B.4.3 Fourier series

The Fourier series (FS) of a function f(x) on the interval [−L,L] has the form

FS =
a0

2
+

∞∑
n=1

(
a(n) cos(nπx/L) + b(n) sin(nπx/L)

)
(B.7)

where the coefficients are defined by

a :=n→ 1

L

∫ L

−L
f(x) cos(nπx/L)dx , n = 0, 1, 2, . . . (B.8)

b :=n→ 1

L

∫ L

=L

f(x) sin(nπx/L)dx , n = 1, 2, . . . (B.9)

(B.10)
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The N th-partial sum, N ≥ 1, for such a Fourier series is simply

FS Partial Sum =
a0

2
+

N∑
n=1

(
a(n) cos(nπx/L) + b(n) sin(nπx/L)

)
Thus to compute the FS of a given function f(x) we need:

1 . The function f(x), and

2 The number L defining the domain x = −L . . . L of the problem.

In Figure B.21 we show the definition of the FS coefficients functions a(n) and

b(n), and then the construction of the N th-partial sum function for this FS. The

figure also contains a plot of the function f(x) = x3 − 2x+ x+ 1 and the 10-term

Partial sum approximation of the FS for f(x).

Figure B.21.
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B.5 Families of Orthogonal Functions in Maple

In your study of partial differential equations and boundary value problems you

will encounter special functions defined by the PDE and the BCs. An important

definition is the following.

Definition B.1. An orthogonal family of functions on an interval [a, b] with weight

function w(x) is a set of nontrivial functions {Xn(x)}∞n=1 whose members satisfy

the equations ∫ b

a

w(x)Xm(x)Xn(x)dx = 0 for m 6= n

Examples:

B.5.1 The family of sine functions {sin(nπx/L)}∞n=1

The family of sine functions {sin(nπx/L)}∞n=1 satisfies∫ L

0

sin(mπx/L) sin(nπx/L)dx = 0 for m 6= n

and hence is an orthogonal family on the interval [0, L] with weight function w(x) =

1.

B.5.2 The family of functions {1, cos(nπx/L)}∞n=1

The family of functions {1, cos(nπx/L)}∞n=1 satisfies∫ L

0

cos(mπx/L) cos(nπx/L)dx = 0 for m 6= n m,n = 0, 1, 2, . . .

and hence is an orthogonal family on the interval [0, L] with weight function w(x) =

1.



“pde˙book”

2021/4/30

page 200i
i

i
i

i
i

i
i

200 Appendix B. Introduction to Maple

B.5.3 The family of functions {1, cos(nπx/L), sin(nπx/L)}∞n=1

The family of functions {1, cos(nπx/L), sin(nπx/L)}∞n=1 is an orthogonal family of

functions on the interval [−L,L] with weight function w(x) = 1 since they satisfy∫ L

−L
Xm(x)Xn(x)dx = 0 for m 6= n

where Xm(x) and Xn(x) are distinct elements in the set of functions.

B.5.4 The Legendre Polynomials

Let Pn(x), n = 0, 1, 2, . . . denote the bounded solutions of Legendre’s differential

equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

with −1 ≤ x ≤ 1. These solutions are even and odd polynomials. For example,

P0(x) = 1, P1(x) = x and P2(x) =
1

2
(3x2 − 1). This family of Legendre polyno-

mials is an orthogonal family on the interval [−1, 1] with weight function w(x) = 1

since ∫ 1

−1

Pm(x)Pn(x)dx = 0 for m 6= n

On the other hand when m = n we have∫ 1

−1

(
Pn(x)

)2

dx =
2

2n+ 1

See the Maple worksheet Legendre Polynomials in Maple to learn how to

use Legendre Polynomials in Maple.

B.5.5 The Bessel Functions

As discussed in Section 7.6 of the textbook the bounded solutions of Bessel’s

equation of order n on the interval [0, 1] are standardly denoted Jn(x), for n =

0, 1, 2, . . . . In the Maple worksheet Jn(x) is denoted BesselJ(n, x). Please down-

load and open the Maple worksheet Bessel Functions in Maple to learn how to

use Bessel functions in Maple. See also the solutions to the exercises in section 7.6

in the textbook to see the Bessel functions at work.

https://zhilin.math.ncsu.edu/PDE_Book/legendrepolynomialsinmaple.mw
https://zhilin.math.ncsu.edu/PDE_Book/besselfunctionsandtheirzeros.mw
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B.6 Quick guide for simple use of Maple

Maple is a symbolic mathematical package that can solve many mathematical

problems analytically or numerically with simulations and animations. Maple has

friendly user interactive interface. Assume that you have access to one of editions

of Maple and are able to open the interactive application, you can get the Maple

prompt by clicking the ’File’ button, then choose ’New’, then choose ’Worksheet

Mode’. With the prompt, you can

• Define a function: f : = x^2 + 1;

• Differentiate a function with respect to x: diff(f, x);

• Get an anti-derivative of a function f(x): int(f, x);

F:=int(cos(m*x)*sin(n*x), x);

• Get the value of a definite integral
∫ 2

0
f(x)dx: int(f, x=0..2);

• Plot a function f(x) in a interval: plot(f, x=-1..2);

• Plot multiple functions in a same graph: plot([f,x-1,3+x^3], x=-1..2);

• Define a piecewise function: f:= piecewise(-2 < x and x < -0.5, 0,

-0.5 <x and x< 0.5, 0.5-abs(x), 0.5<x and x<2, 0);

• Get the Fourier series and plot the partial sum SN (x).

L := 2;

a_sub_0:= 1/(2*L)*int(f,x=-L..L);

a_sub_n:= n -> 1/L*int(f*cos(n*Pi*x/L),x=-L..L);

b_sub_n:= n -> 1/L*int(f*sin(n*Pi*x/L),x=-L..L);

partsumf:=m->a_sub_0+sum(a_sub_n(n)*cos(n*Pi*x/L)+b_sub_n(n)*sin(n*Pi*x/L),n=1..m);

partsumf(10);

plot([f,partsumf(15),partsumf(25)], x=-2*L..2*L,color=[black,red,blue,green]);
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1D heat equation, 99

convolution, 100

fundamental solution, 100

solution formula for a Nuemann

BC, 103

solution formula for homogeneous

BC, 56

solution to BVP, 101

solution to the Cauchy problem,

100

steady state solution, 104, 105

1D wave equation, 25

general solution, 26

left-going wave, 29

non-homogeneous BC, 94

right-going wave, 29

solution formula for homogeneous

BC, 53

solution to Neumann BC, 95

solution to Robin BC, 98

with a lower order term, 98

2D Laplace equation

fundamental solution, 109

2D wave equation

in polar coordinates, 122

pole singularity, 122

separation of variables, 122

with radial symmetry, 122

3D Laplace equation

in spherical coordinates, 125

with radial symmetry, 125

inner product in L2, 38

weak solution, 12

advection equation, 11, 12

Cauchy problem, 13, 141

general solution, 12

solution to BVP, 16

solution to Cauchy problem, 13

variable coefficients, 19

algebraic operations in maple, 178

animate, 186

arithmetic in maple, 178

assignment operator, 180

Bessel equations, 123

order p, 123

Bessel functions, 123

boundary value problems, BVP, 6

built in functions in Maple, 182

Cauchy problem

1D wave equation, 27

advection equation, 13

Cauchy-Schwartz inequality in L2, 40

classical Fourier Series, 69

classical solution, 12

command line, 174

convergence of Fourier series, 71

convolution

Fourier transform, 140

Laplace transform, 145

cosine transform, 136, 146

205



“pde˙book”

2021/4/30

page 206i
i

i
i

i
i

i
i

206 Index

D’Alembert’s formula, 28, 93

diffusion, 142

Dirac delta function, 138

Dirichlet BC, 45

eigenpair, 46

eigenvalue problem, 7, 36

elliptic PDE, 8

Euler’s equation, 119, 126

indicial equation, 119

even extension, 82

execution group, 174

exp, 182

extension and expansion, 79

finite difference method

1D heat equation of BVPs, 158

1D wave equation, 157

2D Poisson equation, 159

for two-point boundary value prob-

lem, 152

finite difference stencil, 153

five-point stencil, 160

floor function, 64

Fourier coefficients, 69

Fourier integral representation, 135,

136

Fourier series, 44, 63

cosine, 195

full, 197

sine, 191, 194

Fourier transform, 137

Parseval’s relation, 140

frequency domain, 69

function, 181

functional space, 38

general solution

1D wave equation, 26

Gibb’s phenomena, 53, 57, 71, 104

gradient operator, 108

grid, 153

grid points, 153

half-range cosine expansion, 82

half-range cosine expansions, 63

half-range expansion, 81

half-range sine expansion, 63, 83

hat function, 67

Heaviside function, 67

Hilbert space, 43

hyperbolic PDE, 8

hyperbolic sine and cosine functions,

110

hyperbolic trig functions, 183

indicial equation, 127

initial value problems, IVP, 6

inner product in L2, 38

Int, 189

int, 189

inverse Fourier transform, 137

inverse Laplace transform, 145

Laplace equation, 107

in polar coordinates, 118

on a circle, 118

Laplace operator, 108

Laplace transform, 143

convolution, 145

Legendre equation, 127

Legendre polynomial, 200

linear space, 68

ln, 183

local truncation error, 153

Lotka-Volterra predator-prey model,
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maple set, 178

master grid point, 160

Matlab ODE Suite, 150

method of separation of variables

1D heat equation, 55

method of changing variables, 11

1st order linear non-homogeneous

PDEs, 20

for 1D wave equations, 25

method of characteristic, 14

method of separation of variables, 35

natural ordering, 161

Neumann BC, 45

norm in L2, 39

normal direction, 108

normal mode solution, 31

normalized orthogonal set, 41

numerical solutions, 4

odd extension, 82

ODE-IVP, 150

orthogonal function in L2, 38

orthogonal set, 41

function expansion, 42

parabolic PDE, 8, 99

partial derivative, 188

partial sum, 69, 71, 190

PDE, 1

period, 64

periodic boundary condition, 119

periodic function, 64

piecewise continuous function, 67

piecewise smooth function, 67

plot, 184

pointwise convergence, 86, 87

polar coordinates, 116

pole condition, 118

red-black ordering, 161

Robin or mixed BC, 45

round-up, 74, 78

sawtooth function, 65, 66

separation of variables

wave equations, 93

series solution of 1D heat equation, 56

sine transform, 136, 146

special symbols in Maple, 180

steady state solution, 105, 108

step function, 81, 137

Sturm-Liouville problem, 45

Sturm-Liouville eigenvalue problem, 44

regular, 47

singular, 47

sum, 191

superposition, 96

symmetric positive definite, 163

text line, 175

time domain, 69

triangle inequality in L2, 40

triangular wave, 74

trig functions, 183

trivial solution, 36, 45

uniform Cartesian grid, 153

uniform convergence, 87

Weierstrass M-test theorem, 87

weight function, 45

weighted inner product, 40

worksheet, 174
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