1. Convert the following quantities.
(a) $55^{\circ}(\mathrm{F})=$ (C).
(b) 1 acre $=$ (square meter m^{2}).
(c) 2500 square foot $=$ (square meter m^{2}).
(d) 65 MPH (miles per hour) $=$
KmPH (kilometers per hour).
(e) 1 Gigabytes $=$
bytes $=$
Megabytes $=$
Kilobytes.

Note that in binary system, we have 1 byte $=8=2^{3}$ Bit, 1 Kilobyte $=1024=2^{10}$ Bytes, 1 Megabyte $=1024=2^{10}$ Kilobytes $=1,048,576=2^{20}$ Bytes, and so on.
2. The average gas price in China is $\$ 6.17$ per liter in RMB while it is $\$ 2.10$ per gallon in US on July 15,2016 . Assume that the exchange rate of one us dollar is 6.69 Chinese RMB. Where is cheaper? By how much? .
3. Are the following formulas are dimensional correct? If not, can you fix it?
(a) $x=\frac{1}{2} a t^{2}$, where x is a distance, a is an acceleration, t is time.
(b) $V=4 \pi R^{2} / 3$, where V is a volume, R is the radius of a sphere. What is the correct formula? What it be dimensional correct if V is the area, and R is a radius of a circle?
4. Assume that we have the following relation

$$
t=h(V, \kappa, T)
$$

If we know the variables have the following dimensions

$$
\begin{aligned}
& \quad[t]=s, \quad[\kappa]=m^{2} s^{-1}, \quad[T]=k g m^{-1} s^{-2} \\
& {[V]=m^{3}}
\end{aligned}
$$

Carry out the dimensional analysis to find relationship between t and other variables.
5. (a) The one dimensional Stokes equation has the following form

$$
\rho u_{t}+p_{x}=\mu u_{x x}
$$

where ρ is the density with dimension $[\rho]=\mathrm{kgm}^{-3}, u$ is the velocity with dimension $[u]=m s^{-1}$, p is the pressure with dimension $[p]=\mathrm{kgm}^{-1} \mathrm{~s}^{-2}, x$ is a length with dimension $[x]=m$, and t is the time with dimension $[t]=s$. Find the dimension of μ (it is called the viscosity). Note: $u_{t}=\frac{\partial u}{\partial t}$, and $u_{x x}=\frac{\partial^{2} u}{\partial x^{2}}$ and so on.
(b) Is the equation $\rho u_{t}+\left(u_{x}\right)^{2}+p_{x}=\mu u_{x x}$ physically correct? Why?
6. Carry out the non-dimensionalization process for the following ODE,

$$
a \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=d f(t)
$$

where a, b, c, d are constants.
7. How long does it take to cook a chicken? It is reasonable to assume that the cooking time is

$$
\begin{equation*}
t=f(l, \rho, T, \kappa) \tag{1}
\end{equation*}
$$

where t is the time, l is the diameter of a circular cooking pan, ρ is the density of the chicken ($[\rho]=\mathrm{kg} \mathrm{m}^{-3}$), T is the oven temperature $\left([T]=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}\right.$), and κ is the thermal conductivity of the chicken $\left([\kappa]=m^{2} s^{-1}\right)$.
(a) Carry out the dimensional analysis to simplify the function relation using l, ρ, T as the primary variables.
(b) It may be also reasonable to assume that the T, say $350^{\circ} F, \rho$, and κ are constant, and $l=C M^{2 / 3}$, where M is the mass of the turkey. Simplify the relation further with those information.
(c) Explore possible way to further simplify (or quantify) the function.
8. Write a summary of the Module (two page limit).

