Sample Final

1. Given four points in an O-XYZ coordinates:

$$A(0,1,0), B(0,-1,1), C(1,1,-1), D(2,0,-1).$$

- (a) Find the distance between B and D.
- (b) Find the vectors \vec{BA} and \vec{BC} .
- (c) Find the dot product $\vec{BA} \cdot \vec{BC}$ and the angle between the vectors \vec{BA} and \vec{BC} .
- (d) Find the cross product $\vec{BA} \times \vec{BC}$ and the area of the parallelogram formed by the vectors \vec{BA} and \vec{BC} . Are A, B, and C in a straight line?
- (e) Find the equation of the sphere that centered at B with the radius 3.
- (f) Find the equation of line passing through B and C in parametric form, symmetric form, and the equation(s) (without parameter).
- (g) Are A, B, C, D in a same plane? (use triple product.)
- (h) Find the equation of the plane passing through A, B, and C. Find the distance between D and the plane.
- 2. Give a geometrical or physical meening of the following integrals:

$$\int_{C} ds, \qquad \iint_{D} dx dy, \qquad \iint_{S} ds, \qquad \int_{C} \vec{F} \cdot dr, \qquad \qquad \iiint_{V} dx dy dz,$$

$$\iiint_{V} \sigma dx dy dz, \qquad \iint_{S} \vec{V} \cdot d\vec{S}.$$

where C is a curve, S is a surface, D is a domain on xy plane, V is a solid in xyz space, \vec{F} is a force, σ is a density function, \vec{V} is a velocity function.

- 3. Given $\mathbf{r}(t) = (\cos t, \sin t, t), 0 \le t \le 4\pi$.
 - (a) Find the tangent direction at $(0, 1, \pi/2)$. Find the equation of the tangent plane at this point.
 - (b) Find the length of the curve between 0 and 2π .
- 4. Give examples, equations, of the following surfaces. Ellipsoid, elliptic paraboloid, hyperbolic hyperboloid, cones, spheres, half planes.
- 5. Given $f(x,y) = \frac{xy}{x^2 + y^2}$, does f(x,y) has limit at (-1,1)? at (0,0)? Is f(x,y) continuous?
- 6. Given

$$f(x,y) = \sqrt{9 - x^2 - y^2}$$

- (a) Find the domain and range of f(x,y). Is f(x,y) continuous on the domain? Explain the definition of the continuity.
- (b) Sketch the level curves of f(x,y), i.e. f(x,y) = k, for k = 0, 1, 2, 3.
- (c) Sketch the graph of f(x, y).
- (d) Find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial x \partial y}$, and $\frac{\partial^2 f}{\partial y^2}$. Under what kind of condition(s), we can conclude that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$?
- (e) Find the equation of the tangent plane of the graph z = f(x, y) at x = 1 and y = 1.
- (f) Given $\vec{u} = -\vec{i} + 2\vec{j}$, find the directional derivative of f(x, y) along the direction. Does f(x, y) increase or decrease along this direction?
- (g) In what direction does f has the maximum rate of increase and decline?
- 7. If z = x/y, $x = re^{st}$, $y = rse^{st}$. Evaluate the following:

$$\frac{\partial z}{\partial r}$$
, $\frac{\partial z}{\partial s}$, $\frac{\partial z}{\partial t}$, $\frac{\partial z^2}{\partial r^2}$ *.

8. (a) Find all critical points of the function

$$f(x,y) = 2x^4 - x^2 + 3y^2 + 4,$$

and then use the second derivative test to determine if each critical point corresponds to a local extreme value or saddle point of the function.

- (b) Find the absolute maximum and minimum in the domain bounded by $x=0,\ y=0,$ and x+2y=2.
- (c) Find the equation of the tangent plane of the graph at (0,0,4).
- 9. (a) Find y' if $x^3 + y^3 = 6xy$.
 - (b) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $x^3 + y^3 + z^3 + 6xyz = 1$.
- 10. Evaluate the following integrals.

(a)
$$\iint_D f(x,y) dxdy$$
, where $f(x,y) = xy$, $D = \{ (x,y), 0 \le x \le 2, 0 \le y \le 4 \}$.

(b)
$$\int_0^1 \int_0^z \int_0^y 2x \, dx \, dy \, dz$$
.

- (c) $\iiint_V f(x, y, z) dx dy dz$, where $V = \{ 0 \le y \le 1, 0 \le z \le y, 0 \le x \le y z \}$. Write it as an iterated integral of **six** different forms.
- 11. Given

$$\int_0^2 dx \int_{-\sqrt{2x-x^2}}^{\sqrt{2x-x^2}} (x^2 + y^2) dy.$$

- (a) Change the order of integration, that is, integrate with x first.
- (b) Express and evaluate the integral using the poplar coordinates. Which approach is the easiest for this problem?
- 12. Express the double integrals $\iint_D f(x,y)$ as two different iterated integrals both in Cartesian coordinates and in polar coordinates. Using the one which you think is simpler to evaluate the integrals. $f(x,y) = x \cos y$, D is bounded by y = 0, y = 0, and $x^2 + 2x + y^2 = 0$.
- 13. Problem of Sample Quiz 1-4, Quiz 1-4.
- 14. If the density of the laminar $x^2 + 2x + y^2 \le 0$ is $\rho(x,y) = \sqrt{x^2 + y^2}$, find the mass, the center*, and the inertia* about the origin, of the laminar.
- 15. Find the triple integral $\iiint_V x \, dV$, where V is bounded by the paraboloid $x = 4y^2 + 4z^2$ and the plane x = 4. Find the volume of V.
- 16. Express a triple integral as six different iterated integrals as in the Sample Quiz 4 and in Quiz 4.
- 17. Write down the spherical coordinates transformation and use it to evaluate the triple integral

$$\iiint_V xyz(x^2+y^2+z^2)dxdydz,$$

where V is the solid between two spheres $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 + z^2 = 4$, that lies in the half space first octant, i.e., $x \ge 0$, $y \ge 0$, and $z \ge 0$.

- 18. Let $f(x, y, z) = x (\sin y) e^z$, $\vec{F} = (\sin x, \cos x, z^2)$.
 - (a) Find the gradient of f(x, y, z), ∇f . What is $\nabla \times \nabla f$?
 - (b) Find the divergence of \vec{F} , $div\vec{F}$. Is \vec{F} divergence free?
 - (c) Find the curl of \vec{F} , $curl \vec{F}$. Is \vec{F} irrotational? Is \vec{F} conservative?
 - (d) Evaluate the line integral $\int_C \nabla f \cdot \vec{dr}$, where C is the line segment from (0,1,0) to $(1,\frac{\pi}{2},0)$.
- 19. Find the line integral $\int_C y ds$, $\int_{-C} y ds$, $\int_C x dx$, and $\int_{-C} x dx$, where C is the circle $x^2 + y^2 = 1$ in clockwise direction from (0,1) to (1,0) and the line segment from (1,0) to (2,3), and -C is the same curve but in opposite direction.
- 20. (a) Use the Green's theorem to evaluate the line integral

$$\frac{1}{2} \oint_c (-y dx + x dy)$$

where c is the unit circle along the positive direction. What is the geometric meaning of your result?

$$\oint_c (yx^2dx + x^2ydy)$$

- 21. Given $\vec{F} = (y^2z^3, 2xyz^3, 3xy^2z^2)$.
 - (a) Is \vec{F} conservative? Why?
 - (b) If your answer is yes, find a potential function f(x, y, z) such that $\nabla f = \vec{F}$.
 - (c) Evaluate the line integral $\int_c \vec{F} \cdot d\vec{r}$, where c is the helix $(4\cos t, 2\sin t, t)$ from $t = 4\pi$ to $t = \pi/2$.
- 22. (a) Give a parametric form of the surface

$$x^2 + y^2 + z^2 = 4, \quad y \ge 0,$$

determine the range of the parameters.

- (b) Find the unit normal direction of the surface and the differential area.
- (c) Find the equation of the tangent plane at (0, 2, 0).
- (d) Find the area of the surface.
- (e) Find the intergral $\iint_S f(x,y,z)ds$, and $\iint_{-S} f(x,y,z)ds$.
- (f) Given a vector field $\vec{F} = (2x, -yz, xy)$, find the flux of \vec{F} , $\iint_S \vec{F} \cdot d\vec{s}$ and $\iint_{-S} \vec{F} \cdot d\vec{s}$ across the surface. where -S is the same surface but with opposite normal direction.
- 23. Let $\vec{F} = (3y^2z^3, 9x^6yz^2, -4xy^2)$.
 - (a) Find the divergence of \vec{F} .
 - (b) Evaluate the flux of \vec{F} across the cube: $-2 \le x \le 3, \ 0 \le y \le 1, \ -3 \le z \le -1.$
- 24. Problems similar to Quizzes, class practices, homework, and examples explained in class.