1. Given four points in an O - XYZ coordinates:

A(0,0,0),	$B\left(1,-1,0\right)$
$\mathrm{C}\left(0,1,1 ight)$	D(-1,0,1).

- (a) Find the distance between A and D.
- (b) Find the area of the parallelogram formed by the vectors \vec{AB} and \vec{AC} . Are A, B, and C are in a same line?
- (c) Find a *unit* vector which is orthogonal to both \vec{AB} and \vec{AC} .
- (d) Find the angle between \vec{AB} and \vec{AC} .
- (e) Find the vector and component projection of vector \vec{AB} on the vector \vec{AC} .
- (f) Find the equation of the sphere which centered at D with the radius 2.
- (g) Find the equation of line which passes through A and B in both parametric and symmetric form.
- (h) Find the mid-point between A and B.
- (i) Are A, B, C, and D are co-planar?
- (j) Find the equation of plane which passes through C and orthogonal to the vector \vec{AB} .
- (k) Find the distance from the point D to the plane above.
- 2. Identify (sphere, ellipsoid, hyperboloid, paraboloid, cylinder, cone), draw traces z = k, and sketch the following quadric surfaces.
 - (a) z = x² + y² + 1.
 (b) 9x² + y² z² 2y + 2z = 0. Hint: use complete square.
- 3. *Name* the following equations (line, plane, surface, paraboloid, ...). It the equation is a line, find the direction of the line and a point on the line; if it is a plane, find the normal direction and a point on the plane; if it is a quadric surface, sketch it using suitable traces.
 - (a) $\frac{x}{2} = \frac{y-8}{-1} = \frac{z+2}{0}$. (b) x - 2y + 1 + 4z = 0.
 - (c) $x = y^2 + z^2/4$.
- 4. When the following equation

$$x^2 + x + y^2 - 3y + z^2 = a$$

is a sphere? Find the center and the radius when the equation is a sphere.

5. Short question/problems presented in class.