El.1(a)

E1.1(b)
E1.1(c)

E11(d)

El.1(e)

E1.1(f)

E1.2:

E1.3:

El4(a) :

E1.4(b) :

E1.5

MA401, Selected Homework Solutions

: y(z) = Ce "+ 1. The first term is the solution to ' +y = 0, the second term can be spotted easily
or obtained using the undetermined coefficient method.

. y(z) = Ce=*/? by re-writing the DE as y' + /2 = 0.

2
sy(r) = -5 +4

: y(z) = Ce?® — Zsinz — £ cosz. The first term is the solution to y’ — 2y = 0, the second term can

be solved using the undetermined coefficient method.

: The equation is called the Euler equation. We can use the solution for the Euler equation. We can
also use Maple to solve it easily using command ”ode := diff(y(x), x) = -x*y(x) + x”, followed by
”dsolve(ode)” . The solution is y(z) = 1+ Ce* /2.

: The solution is y(z) = C'z. Re-write the equation as ”;—y

% and integrate on both sides to get

log |y| = log |z| 4+ C1, or y = Cx after taking exponential on both sides, where C = e©1.

Reference: https://en.wikipedia.org/wiki/Hyperbolic_functions. They have many similar properties
and trigonometric functions.

(a): We have sinh’(x) = cosh(z), sinh”(z) = cosh’(z) = sinh(z), so we have sinh”(z) — sinh(z) = 0,
thatis, the DE is satisfied. Similarly, cosh’(z) = sinh(z), cosh”(z) = sinh’(z) = cosh(z) so we have
cosh”(x) = cosh(x), thatis, the DE is satisfied.

(b): If we add/subtract sinh(z) and cosh(z), and then divide by number 2, we have

e® = sinh(z) 4 cosh(z), e~ = cosh(x) — sinh(x).

(©) Wsinh(a) cosh(a)) = dee (St L) = e (SN OO ) i) -

cosh? () = —1 # 0. Thus, they are two independent solution to the ODE and another other solutions
can be expressed as a linear combination of the two.

(a), u(z,t) = F(t); (b), u(z,t) = G(x); (c), u(z,t) = tf(x) + G(t); (d), u(x,t) = F(z) + G(t).

% = 2z, % = 2. g—Z = 2y, ‘3273 = 2. Thus, the left hand side of the PDE is LHS =2+2 =4 =
RHS.

22 ou Yy 9%u

; cOu . _x  9%w 1 2  du .y
By hand or using Maple, we get: 52 = =5, 528 = =7 — 2r2 oy — Pa2 op
2

@ — x;’Tyz Thus, the left hand side of the PDE is LHS =0 = RHS.

: Using Maple commands: u:=e” (-272/4xk*t) /sqrt (4xk*t*pi) . Then we type: diff (u,t)-k*diff (u,x,x)
and simplify (%) . Note the fact that loge =1 to get LHS = RHS.

Chapter 2



E2.1 : Integrate with respect to x to get u(z,y) = G(y), integrate with resect to = to get u(z,y) =
f(x) + g(y), where f(z) and g(z) are arbitrary functions that have up to second order continuous
derivatives. Note that the solution includes the case u(x,y) = F(z) + G(y) + C.

E2.2 : A second order, linear, constant, non-homogeneous PDE. If A = 0, it is a Poisson equation, an
elliptic PDE. If A # 0, then the PDE is a parabolic PDE.

E2.3 : (a) u(z,t) = f(x — 3t/2), u(x,t) = sin(x — 3t/2). u(x,t) = e~ (@=3t/2),
(b): u(z, ) f(z—0bt/a)e!/*. Note that we have U’ —U/a = 0 after changing variables. f(z) = ug(z),
x

w(z,t) = sin(z — bt /a)et/®; u(x, t) = e~ @=bt/a)¢t/a,

E2.4 : (a): ug + sintu, = 0. Solution: dz/dt = sint, x = —cost + C, the solution is u(z,t) = f(C) =
f(z + cost).
(b) : e uy + zu, = 0. Solution: dy/dx = ey y = —e_z2/2+C’. w(z,y) = f(C) = fly+e = /2).

E2.5 : Find the solution to the following transport equation:

ou 10
ot 20z
u(z,0) =e™ 7, 0<z<l,
u(0,t) = 2, 0<t.

=0, O<ax<l, t>0,

Solution: u(z,t) = e~ ®=/2) if & > ¢/2; u(x,t) = (t — 2x)% if x < /2.

E2.7 (a): Use the standard transform for 1D advection equations, { = x—at, n = t, we get U,, = e2(&tan) —
e?¢e?m. Solve the ODE with respect to 1, we get U(&,n) = €2¢€27/2 + F(¢). We then plug back the
original variables to get the solution u(z,t) = Le*@=®e 4 F(z — at).

(b): We should use the method of characteristics by setting ‘(li—f =z or d—f = dt. The solution to the
ODE is log|z| =t + C, or ze~* = C. Thus, the solution is u(z,t) = f(z~").

(c): We should use the method of characteristics by setting & dw = t. The solution to the ODE is
x =t?/2 + C. Thus, the solution is u(x,t) = f(z —t?/2).

(d): Use the standard transform for 1D advection equations, { = x — 3t, n =t, we get U, = U + &n.
Solve the ODE with respect to 1, we get U(&,n) = —&n— £+ e"F(£). We then plug back the original
variables to get the solution u(z,t) = —(z — 3t)t — (z — 3t) + ' F(z — 3t).

Chapter 3

A):u(z,t) = F(z — ct) + G(x + ct).
1(sin(rz — t) + sin(mz + t))
z,t) = 1(sin(m(z—1t))+3sin(2r(z—t))+sin(r(z+t))+3sin(27m(z+t))) — 5= (cos(z + t) — cos(z — t))

E3.2 (a) u(z,t) = sin 27% cos 22,
(c) u(z,t) = 12L77c sin 37er sin 32“ - GOLm sin 62"” sin G’ECt

(d) u(z,t) = Lsin 37 cos 37t 4 L sin 57 cos 0%t 4 Lo gin 372 gjp 37ct 2L gjpy T7L g Trct




E3.3 (a)

1. u(z,t) = sin(6mz) cos(12wt) .
(b) u(x,t) = &= sin(3mx) sin(67t).
(e) u(z,t) = sin(67x) cos(127t) — 7sin(24mz) cos(48mt) + &= sin(3wx) sin(67t).
Chapter 4
4l n=1,2--

2 (b) ||[1]| = v/2p, for others the norm is \/p.
(c 2)p = @ffpmdm = %fo xdr = %. For other n, a, = %ffp || cos "%‘d:p = %fé’ || cos n‘n'acdx _

Tir ) (1 —(=1)"). Thus, the expansion is

1 > 2p nne
)= — + 1—(—1)")cos —, r e (=p,p)-
ol = 55+ 2 Gy (1 (T eos = (=p.p)

The series is convergent in [—p, p].

E4.3 Determine the constants a and b so that the functions 1, z, and a+ bz +z? are orthogonal on (-1, 1).
a = —1/3, which can be obtained from f_ll(a + bx + 22)dx = f_ll(a + 2?)dr = 2a +2/3 = 0. From
fil z(a + bz + 2%)dz = 2b/3 = 0, we get b= 0.

E45. (a) A\ = (2n+1)> yn(z) =sin(2n+ 1)z, n=0,1,2,---; (b) No; (c) Zero since the eigenfunctions

are orthogonal.

E4.6. It does not make sense to expand in (—1, 1) since the set is not an orthogonal one. It only make sense
to expand in (—7,7) as a classical Fourier series. Since f(z) = 22 is an even function, the coefficient
of b, = 0 and we have only cos nz terms. Thus the cosine expansion is the same as the Fourier series.

See Maple file fourier_x_squared;

n

cos(nx).

T

If we expand 22 in terms of sin(nz), all the coefficients are zero. So it is not very useful, or does not

converge!

E4.7. We need to change to the standard Sturm-Liouville form (called seld-adjoint) to judge whether the
eigenvalues are regular or singular. (a), regular; (b), (zy') + Ay = 0, regular; (c), (2%y')" + z\y =
/!

/
1
0 with w(x) = z, regular. (d), <y> + A—y = 0 with w(z) = 1/z, singular at x = 0. (e),
x x

(1 —2%)y') + (14 Az)y = 0, singular at © = +1.

E4.8. (a) An = (%)2, yn(z) = sin ”4’”, n=12---
(b) A = (4n yn(x) = sin(dnz), n=1,2,--
(¢) \p = (%I")Q, yn(x) = cos %an‘, n=0,1,2,--



() A = (502, yolz) =sin 2"2 n=0,1,2, -+

(e) y(z) = Cy cos vV Az + Cysinyv/Az. From y(0) + y/(0) = 0, we get C; — Cov/A =0, or C; = Cav/\.
From y(47) = 0 we get Cy(cos4mv/ X — vV Asin4mv/X) = 0, or VA = — tan47v/A. The eigenfunctions
are Y, () = cos vV A& — VA siny/ Az,

(f) Similarly the eigenvalues satisfy the equation: /A, = tan4mv/\,,. The eigenfunctions are y, (z) =

sin v/ A,x.

1 2 1
E4.9. )\, = (#) , yn(x) = cos((étjn)ﬂ)x, n=0,1,2,---.

(a): No. (b): Infinite. (c): Zero.

E4.10. (a),

1
u(z,t) = sin(4nwz) cos(8nt) + o sin(4mx) sin(8t).
77

E4.13. Note the different boundary condition %(L,t) = 0. When we use the method of separation of

variables, we have two equations
X"(z) + AX(z) =0, 0O<z<L, X(0)=0, X'(L)=0,
T'(t) + AM\T(t) = 0.

(3+n)ma

2
From the first equation, we get A\, = (%Tnh) ; Xp(z) = sin 25—, n = 0,1,---. We then solve
for T(t) to get T(t) = bye=< (z+™°t. Thus, the solution has the following form:
00 1
201, y2 (5 +n)mx
t) = bpe ¢ (2t tgin 22 - 27T
u(x,t) Z e sin 7

n=0
The coefficient is determined from the initial condition u(x,0) = f(x).

2 1 2 1
bn:%/o f(x) sin(Q—i_Ln)ﬂ-gcdx/0 f(x)sin%dx.

Chapter 5

E5.1. Find the period of the following functions. f(z) = 5, f(z) = cosz, f(z) = cos(wz), f(x) =
cos(pr), f(x) = cos?x, f(x) = cosxsinz, f(z) = cos(x/2) + 3sin(2z), f(z) = tan(mx) +
nmwx\

sin(2z) d {
e , an cos .
L n=0

The periods are: 0, 2w, 2, 2&. 7, since cos’z = %(1 + cos(2x), m, since coszsinz =
1 s
5sin(2x), 4w, max{l, 7}, 2L.

E5.5. (a): It is itself. In this example, b, = 0 since cos(2x) is even. Try to match one of n’s in the expansion
oo

cos(2x) ~ ag + Z ay, cosnz, obviously n = 2, with ay = 1 and other a,, = 0.

n=1



0 1

1
(b): Need full expansion with L = 1, cos(2z) ~ ag + Z a, cosnrx, where ag = 5/ cos(2x)dx =

n=1 -1

1 1 1
/ cos(2x)dx, a, = / cos(2x) cos nrrdr = 2/ cos(2x) cos nradx.
0 -1 0

00 1

(c): Need full expansion with L = 1, cos(2z) ~ Z by, sinnrax, with b, = 2/ cos(2z) sin nrxdz.
n=1 0

(d): It’s the same as (b) but the expansion is only valid in (0,1).

(e): It’s itself, same as (a).

i 11 (1 1
E5.11. (a): Since COS;W + Sm;m < (2 + 3>, and Z (2 + 3> converges, the series is uniformly
n n n n n n
n=1
convergent.
n 10™ e n
(b): Since | —| < — and Z —— converges, the series is uniformly convergent.
n! n! !
n=1
1 — 1
(¢): Since M < —, and Z — does not converge, we have no conclusion about the uniform
n n
convergence. n=t
Chapter 6
E6.2. Tt is a heat equation so the series solution should look like
0o (anwc>2
T\
u(z,t) = Z aan< T )6 L
n=1or 0
n 1 n 1 2 (7 1
(a): Neumann-Dirichlet, X, (a 77:1:) = cos(z + n)x, el _ (z+mn),an, = f/ 78 cos(= + n)xdz.
2 L 2 ™ Jo 2
(b): Dirichlet-Dirichlet and a normal mode with n = 10, so u(z,t) = 30 sin(le)e‘lOz?’zt.
1 1
(c): Dirichlet-Neumann, X, (w) =sin(= +n)z, el _ (z+n),
L 2 L 2
) /2 ) 1 T ) 1
ap = — 33z sin(= + n)zdx + 33(m — ) sin(= + n)zdz |.
m 0 2 /2 2
d*u
E6.3. The ODE for the SSS is0 = ¢? duz or u?(xz) = 0. So the general solution is us(x) = Cy + Caz.
x
(a): The BC’s are us(0) = 0 and us(1) = 0. We get us(x) = 100z.
(b): The BC’s are us(0) = 0 and us(m) = 0. We get us(z) = 100.
E6.8. Given
ou . 0%u
— =u+ .
ot Oz

(a) Classify the following PDE.



(b) Solve the boundary value problem of the PDE on the domain 0 < x < 7w with

u(0,t) =0, %(ﬂ',t) =0, u(x,0)= f(x).

(¢) Find the steady state solution if it exists.

Solution:
(a): The PDE is a second order, linear, constant coefficient, homogeneous PDE, and parabolic.
(b): The X (z) equation is as usual, X" + AX = 0 with X(0) = 0 and X'(w) = 0. It’s Dirichlet-

n . 1 n 1 . .
%) = s1n(§ +n)z, aLW = (5 +n). The T(¢t) equation is T/ =T — AT+ AT =0

=X We get T),(t) = e1~ (3t The series solution is

Neumann, so X,, (
T -T

from
- 1
’LL(.’L',t) = ;an Sin(§ + n)a: 6(1—(%+n)2)t

2 [T 1
with an:f/ f@)sin(=z +n)xder, n=0,1,---.
™ 0 2

d?us dus
(c): 0=u+ d—;, us(0) = 0 and di (1) = 0.
The solution is us(x) = Cy cos 2+ Cy sin x. From the two boundary condition, we get us(x) = C'sinz,

O<z<m.

E6.9. The SSS is the solution to the following:

0 ?u,  O%uy

O<xr<?2, 0O0<y<l,

022 oy?’
Oug .
us(z,0) =0, 3 (,1) =0, us(0,y) =0, wus(2,y) =siny.
Y

In this problem, if we use us(x,y) = X (2)Y (y), then we have Y(0) = 0 and Y'(1) = 0, and X (0) = 0.
We have two homogeneous BC’s for Y (y) and only one homogeneous BC for X (x). So we should
solve the S-L eigenvalue problem for Y (y) which is a Dirichlet-Neumann type with L = 1. We have
Y, (y) = sin(3+n)my. Then from X" -\, X = 0 we get X,,(z) = A, cosh(%+n)rz+B, sinh(3+n)rz.
Since X (0) = 0, we have A,, = 0, so the series solution is

1 1
S b) n i i .
u (J? y)—ngolg Sll’l(2+n)71y Sln]l(2+n)7.’£
Finally, using u(2,y) = siny, we get B S /1' '(*1+)d
1ma. using u = Sin € ge n — ~. S Y Sin n .
) g Y Y, g sinh(1 +n) J, Y B yay

E6.10. The SSS is the solution to the following;:

0 = Aug, 22+ 9y < 3,
(a): wus(3,0) =100, Hint: a normal mode.

1 ifo<o<m,

0 w<x<2r.

(b): uy(3,0) = {



The solution to (a) is simply us(r,8) = 100. For (b), we can use the formula (6.60) in the book,
o0 A7
u(r,0) = ag + ; (g) (an cosnb + b, sinnd) .

which is the Fourier series expansion of f(6). The coefficients are

1 (7 1 L["
ao_%/o f(9)d9—§, an_;/o f(6) cosnb df = 0,

1 [" 1 1 —cos
bn:i/ F(8)sinnbdf = —— cosnb|T = ——TT o —12,...
T Jo nmw

nm



