
MA401, Selected Homework Solutions

E1.1(a) : y(x) = Ce−x + 1. The first term is the solution to y′+ y = 0, the second term can be spotted easily

or obtained using the undetermined coefficient method.

E1.1(b) : y(x) = Ce−x/2 by re-writing the DE as y′ + y/2 = 0.

E1.1(c) : y(x) = −x
2

4 + 4.

E1.1(d) : y(x) = Ce2x − 2
5 sinx− 1

5 cosx. The first term is the solution to y′ − 2y = 0, the second term can

be solved using the undetermined coefficient method.

E1.1(e) : The equation is called the Euler equation. We can use the solution for the Euler equation. We can

also use Maple to solve it easily using command ”ode := diff(y(x), x) = -x*y(x) + x”, followed by

”dsolve(ode)” . The solution is y(x) = 1 + Ce−x
2/2.

E1.1(f) : The solution is y(x) = Cx. Re-write the equation as dy
y = dy=x

x and integrate on both sides to get

log |y| = log |x|+ C1, or y = Cx after taking exponential on both sides, where C = eC1 .

E1.2 : Reference: https://en.wikipedia.org/wiki/Hyperbolic functions. They have many similar properties

and trigonometric functions.

(a): We have sinh′(x) = cosh(x), sinh′′(x) = cosh′(x) = sinh(x), so we have sinh′′(x) − sinh(x) = 0,

thatis, the DE is satisfied. Similarly, cosh′(x) = sinh(x), cosh′′(x) = sinh′(x) = cosh(x) so we have

cosh′′(x) = cosh(x), thatis, the DE is satisfied.

(b): If we add/subtract sinh(x) and cosh(x), and then divide by number 2, we have

ex = sinh(x) + cosh(x), e−x = cosh(x)− sinh(x).

(c) W (sinh(x), cosh(x)) = det

(
sinh(x) sinh′(x)
cosh(x) cosh′(x)

)
= det

(
sinh(x) cosh(x)
cosh(x) sinh(x)

)
= sinh2(x) −

cosh2(x) = −1 6= 0. Thus, they are two independent solution to the ODE and another other solutions

can be expressed as a linear combination of the two.

E1.3 : (a), u(x, t) = F (t); (b), u(x, t) = G(x); (c), u(x, t) = tf(x) +G(t); (d), u(x, t) = F (x) +G(t).

E1.4(a) : ∂u
∂x = 2x, ∂2u

∂x2 = 2. ∂u
∂y = 2y, ∂2u

∂y2 = 2. Thus, the left hand side of the PDE is LHS = 2 + 2 = 4 =

RHS.

E1.4(b) : By hand or using Maple, we get: ∂u
∂x = x

x2+y2 , ∂2u
∂x2 = 1

x2+y2 −
x2

x2+y2 . ∂u
∂y = y

x2+y2 , ∂2u
∂y2 =

1
x2+y2 −

y2

x2+y2 . Thus, the left hand side of the PDE is LHS = 0 = RHS.

E1.5 : Using Maple commands: u:=e^(-2^2/4*k*t)/sqrt(4*k*t*pi) . Then we type: diff(u,t)-k*diff(u,x,x)

and simplify(%). Note the fact that log e = 1 to get LHS = RHS.

Chapter 2



E2.1 : Integrate with respect to x to get u(x, y) = G(y), integrate with resect to x to get u(x, y) =

f(x) + g(y), where f(x) and g(x) are arbitrary functions that have up to second order continuous

derivatives. Note that the solution includes the case u(x, y) = F (x) +G(y) + C.

E2.2 : A second order, linear, constant, non-homogeneous PDE. If A = 0, it is a Poisson equation, an

elliptic PDE. If A 6= 0, then the PDE is a parabolic PDE.

E2.3 : (a) u(x, t) = f(x− 3t/2), u(x, t) = sin(x− 3t/2). u(x, t) = e−(x−3t/2)
2

.

(b): u(x, t) = f(x−bt/a)et/a. Note that we have U ′−U/a = 0 after changing variables. f(x) = u0(x),

u(x, t) = sin(x− bt/a)et/a; u(x, t) = e−(x−bt/a)
2

et/a.

E2.4 : (a): ut + sin tux = 0. Solution: dx/dt = sin t, x = − cos t + C, the solution is u(x, t) = f(C) =

f(x+ cos t).

(b) : ex
2

ux +xuy = 0. Solution: dy/dx = e−x
2

x. y = −e−x2

/2 +C. u(x, y) = f(C) = f(y+ e−x
2

/2).

E2.5 : Find the solution to the following transport equation:

∂u

∂t
+

1

2

∂u

∂x
= 0, 0 < x < 1, t > 0,

u(x, 0) = e−x, 0 < x < 1,

u(0, t) = t2, 0 < t.

Solution: u(x, t) = e−(x−t/2) if x > t/2; u(x, t) = (t− 2x)2 if x < t/2.

E2.7 (a): Use the standard transform for 1D advection equations, ξ = x−at, η = t, we get Uη = e2(ξ+aη) =

e2ξe2η. Solve the ODE with respect to η, we get U(ξ, η) = e2ξe2η/2 + F (ξ). We then plug back the

original variables to get the solution u(x, t) = 1
2e

2(x−at)e2t + F (x− at).

(b): We should use the method of characteristics by setting dx
dt = x or dx

x = dt. The solution to the

ODE is log |x| = t+ C, or xe−t = C. Thus, the solution is u(x, t) = f(x−t).

(c): We should use the method of characteristics by setting dx
dt = t. The solution to the ODE is

x = t2/2 + C. Thus, the solution is u(x, t) = f(x− t2/2).

(d): Use the standard transform for 1D advection equations, ξ = x− 3t, η = t, we get Uη = U + ξη.

Solve the ODE with respect to η, we get U(ξ, η) = −ξη− ξ+ eηF (ξ). We then plug back the original

variables to get the solution u(x, t) = −(x− 3t)t− (x− 3t) + etF (x− 3t).

Chapter 3

E3.1 (A): u(x, t) = F (x− ct) +G(x+ ct).

(a) u(x, t) = 1
2 (sin(πx− t) + sin(πx+ t))

(b) u(x, t) = 1
2 (sin(π(x−t))+3 sin(2π(x−t))+sin(π(x+t))+3 sin(2π(x+t)))− 1

2π (cos(x+ t)− cos(x− t))

(c): See the Maple file.

E3.2 (a) u(x, t) = sin 2πx
L cos 2πct

L .

(c) u(x, t) = L
12πc sin 3πx

L sin 3πct
L − L

60πc sin 6πx
L sin 6πct

L

(d) u(x, t) = 1
4 sin 3πx

L cos 3πct
L + 1

10 sin 6πx
L cos 6πct

L + L
12c sin 3πx

L sin 3πct
L − 2L

35πc sin 7πx
L sin 7πct

L .



E3.3 (a)

1. u(x, t) = sin(6πx) cos(12πt) .

(b) u(x, t) = 1
6π sin(3πx) sin(6πt).

(e) u(x, t) = sin(6πx) cos(12πt)− 7 sin(24πx) cos(48πt) + 1
6π sin(3πx) sin(6πt).

Chapter 4

E4.1 n = 1, 2, · · ·.

E4.2 (b) ‖1‖ =
√

2p, for others the norm is
√
p.

(c) a0 = 1
2p

∫ p
−p |x|dx = 1

p

∫ p
0
xdx = 1

2p . For other n, an = 1
p

∫ p
−p |x| cos nπxp dx = 2

p

∫ p
0
|x| cos nπxp dx =

2p
(nπ)2 (1− (−1)n). Thus, the expansion is

|x| = 1

2p
+

∞∑
n=1

2p

(nπ)2
(1− (−1)n) cos

nπx

p
, x ∈ (−p, p).

The series is convergent in [−p, p].

E4.3 Determine the constants a and b so that the functions 1, x, and a+bx+x2 are orthogonal on (−1, 1).

a = −1/3, which can be obtained from
∫ 1

−1(a + bx + x2)dx =
∫ 1

−1(a + x2)dx = 2a + 2/3 = 0. From∫ 1

−1 x(a+ bx+ x2)dx = 2b/3 = 0, we get b = 0.

E4.5. (a) λn = (2n+ 1)
2

yn(x) = sin (2n+ 1)x, n = 0, 1, 2, · · ·; (b) No; (c) Zero since the eigenfunctions

are orthogonal.

E4.6. It does not make sense to expand in (−1, 1) since the set is not an orthogonal one. It only make sense

to expand in (−π, π) as a classical Fourier series. Since f(x) = x2 is an even function, the coefficient

of bn = 0 and we have only cosnx terms. Thus the cosine expansion is the same as the Fourier series.

See Maple file fourier x squared;

x2 =
2π2

3
+

∞∑
n=1

2(−1)n

n2
cos(nx).

If we expand x2 in terms of sin(nx), all the coefficients are zero. So it is not very useful, or does not

converge!

E4.7. We need to change to the standard Sturm-Liouville form (called seld-adjoint) to judge whether the

eigenvalues are regular or singular. (a), regular; (b), (xy′)′ + λy = 0, regular; (c), (x2y′)′ + xλy =

0 with w(x) = x, regular. (d),

(
y′

x

)′
+ λ

1

x
y = 0 with w(x) = 1/x, singular at x = 0. (e),

((1− x2)y′)′ + (1 + λx)y = 0, singular at x = ±1.

E4.8. (a) λn = (n4 )2, yn(x) = sin nx
4 , n = 1, 2, · · ·;

(b) λn = (4n)2, yn(x) = sin(4nx), n = 1, 2, · · ·;

(c) λn = (
1
2+n

4 )2, yn(x) = cos
1
2+n

4 x, n = 0, 1, 2, · · ·;



(d) λn = (
1
2+n

4 )2, yn(x) = sin
1
2+n

4 x, n = 0, 1, 2, · · ·;

(e) y(x) = C1 cos
√
λx+ C2 sin

√
λx. From y(0) + y′(0) = 0, we get C1 − C2

√
λ = 0, or C1 = C2

√
λ.

From y(4π) = 0 we get C2(cos 4π
√
λ−
√
λ sin 4π

√
λ) = 0, or

√
λ = − tan 4π

√
λ. The eigenfunctions

are yn(x) = cos
√
λnx−

√
λn sin

√
λnx.

(f) Similarly the eigenvalues satisfy the equation:
√
λn = tan 4π

√
λn. The eigenfunctions are yn(x) =

sin
√
λnx.

E4.9. λn =
(

( 1
2+n)π

p

)2
, yn(x) = cos(

( 1
2+n)π

p )x, n = 0, 1, 2, · · ·.

(a): No. (b): Infinite. (c): Zero.

E4.10. (a),

u(x, t) =
1

2

(
(x− 2t)e−(x−2t) + (x+ 2t)e−(x+2t)

)
+

1

4

∫ x+2t

x−2t
e−sds.

(b),

u(x, t) = sin(4πx) cos(8πt) +
1

8π
sin(4πx) sin(8πt).

E4.13. Note the different boundary condition ∂u
∂x (L, t) = 0. When we use the method of separation of

variables, we have two equations

X ′′(x) + λX(x) = 0, 0 < x < L, X(0) = 0, X ′(L) = 0,

T ′(t) + c2λT (t) = 0.

From the first equation, we get λn =
(

( 1
2+n)π

L

)2
, Xn(x) = sin

( 1
2+n)πx

L , n = 0, 1, · · ·. We then solve

for T (t) to get T (t) = bne
−c2( 1

2+n)
2t. Thus, the solution has the following form:

u(x, t) =

∞∑
n=0

bne
−c2( 1

2+n)
2t sin

( 1
2 + n)πx

L
.

The coefficient is determined from the initial condition u(x, 0) = f(x).

bn =
2

L

∫ 2

0

f(x) sin
( 1
2 + n)πx

L
dx =

∫ 2

0

f(x) sin
( 1
2 + n)πx

2
dx.

Chapter 5

E5.1. Find the period of the following functions. f(x) = 5, f(x) = cosx, f(x) = cos(πx), f(x) =

cos(px), f(x) = cos2 x, f(x) = cosx sinx, f(x) = cos(x/2) + 3 sin(2x), f(x) = tan(mx) +

esin(2x), and
{

cos
nπx

L

}∞
n=0

.

The periods are: 0, 2π, 2, 2π
p ; π, since cos2 x = 1

2 (1 + cos(2x), π, since cosx sinx =
1
2 sin(2x), 4π, max{ πm , π}, 2L.

E5.5. (a): It is itself. In this example, bn = 0 since cos(2x) is even. Try to match one of n’s in the expansion

cos(2x) ∼ a0 +

∞∑
n=1

an cosnx, obviously n = 2, with a2 = 1 and other an = 0.



(b): Need full expansion with L = 1, cos(2x) ∼ a0 +

∞∑
n=1

an cosnπx, where a0 =
1

2

∫ 1

−1
cos(2x)dx =∫ 1

0

cos(2x)dx, an =

∫ 1

−1
cos(2x) cosnπxdx = 2

∫ 1

0

cos(2x) cosnπxdx.

(c): Need full expansion with L = 1, cos(2x) ∼
∞∑
n=1

bn sinnπx, with bn = 2

∫ 1

0

cos(2x) sinnπxdx.

(d): It’s the same as (b) but the expansion is only valid in (0, 1).

(e): It’s itself, same as (a).

E5.11. (a): Since

∣∣∣∣cosnx

n2
+

sinnx

n3

∣∣∣∣ ≤ ( 1

n2
+

1

n3

)
, and

∞∑
n=1

(
1

n2
+

1

n3

)
converges, the series is uniformly

convergent.

(b): Since

∣∣∣∣xnn!

∣∣∣∣ ≤ 10n

n!
and

∞∑
n=1

10n

n!
converges, the series is uniformly convergent.

(c): Since

∣∣∣∣cos(x/n)

n

∣∣∣∣ ≤ 1

n
, and

∞∑
n=1

1

n
does not converge, we have no conclusion about the uniform

convergence.

Chapter 6

E6.2. It is a heat equation so the series solution should look like

u(x, t) =

∞∑
n=1 or 0

anXn

(αnπx
L

)
e
−
(αnπc

L

)2

t
.

(a): Neumann-Dirichlet, Xn

(αnπx
L

)
= cos(

1

2
+ n)x,

αnπ

L
= (

1

2
+ n), an =

2

π

∫ π

0

78 cos(
1

2
+ n)xdx.

(b): Dirichlet-Dirichlet and a normal mode with n = 10, so u(x, t) = 30 sin(10x)e−10
232t.

(c): Dirichlet-Neumann, Xn

(αnπx
L

)
= sin(

1

2
+ n)x,

αnπ

L
= (

1

2
+ n),

an =
2

π

(∫ π/2

0

33x sin(
1

2
+ n)xdx+

∫ π

π/2

33(π − x) sin(
1

2
+ n)xdx

)
.

E6.3. The ODE for the SSS is0 = c2
d2us
dx2

or u′′s (x) = 0. So the general solution is us(x) = C1 + C2x.

(a): The BC’s are us(0) = 0 and us(1) = 0. We get us(x) = 100x.

(b): The BC’s are us(0) = 0 and us(π) = 0. We get us(x) = 100.

E6.8. Given
∂u

∂t
= u+

∂2u

∂x2
.

(a) Classify the following PDE.



(b) Solve the boundary value problem of the PDE on the domain 0 < x < π with

u(0, t) = 0,
∂u

∂x
(π, t) = 0, u(x, 0) = f(x).

(c) Find the steady state solution if it exists.

Solution:

(a): The PDE is a second order, linear, constant coefficient, homogeneous PDE, and parabolic.

(b): The X(x) equation is as usual, X ′′ + λX = 0 with X(0) = 0 and X ′(π) = 0. It’s Dirichlet-

Neumann, so Xn

(αnπx
L

)
= sin(

1

2
+n)x,

αnπ

L
= (

1

2
+ n). The T (t) equation is T ′−T −λT +λT = 0

from
T ′ − T
T

= λ. We get Tn(t) = e(1−(
1
2+n)

2)t. The series solution is

u(x, t) =

∞∑
n=0

an sin(
1

2
+ n)x e(1−(

1
2+n)

2)t

with an =
2

π

∫ π

0

f(x) sin(
1

2
+ n)x dx, n = 0, 1, · · ·.

(c): 0 = u+
d2us
dx2

, us(0) = 0 and
dus
dx

(π) = 0.

The solution is us(x) = C1 cosx+C2 sinx. From the two boundary condition, we get us(x) = C sinx,

0 < x < π.

E6.9. The SSS is the solution to the following:

0 =
∂2us
∂x2

+
∂2us
∂y2

, 0 < x < 2, 0 < y < 1,

us(x, 0) = 0,
∂us
∂y

(x, 1) = 0, us(0, y) = 0, us(2, y) = sin y.

In this problem, if we use us(x, y) = X(x)Y (y), then we have Y (0) = 0 and Y ′(1) = 0, and X(0) = 0.

We have two homogeneous BC’s for Y (y) and only one homogeneous BC for X(x). So we should

solve the S-L eigenvalue problem for Y (y) which is a Dirichlet-Neumann type with L = 1. We have

Yn(y) = sin(1
2 +n)πy. Then from X ′′−λnX = 0 we get Xn(x) = An cosh( 1

2 +n)πx+Bn sinh( 1
2 +n)πx.

Since X(0) = 0, we have An = 0, so the series solution is

us(x, y) =

∞∑
n=0

Bn sin(
1

2
+ n)πy sinh(

1

2
+ n)πx.

Finally, using u(2, y) = sin y, we get Bn =
2

sinh(1 + n)

∫ 1

0

sin y sin(
1

2
+ n)y dy.

E6.10. The SSS is the solution to the following:

0 = ∆us, x2 + y2 < 3,

(a): us(3, θ) = 100, Hint: a normal mode.

(b): us(3, θ) =

{
1 if 0 < θ ≤ π,
0 π < x < 2π.



The solution to (a) is simply us(r, θ) = 100. For (b), we can use the formula (6.60) in the book,

u(r, θ) = a0 +

∞∑
n=1

(r
3

)n
(an cosnθ + bn sinnθ) .

which is the Fourier series expansion of f(θ). The coefficients are

a0 =
1

2π

∫ π

0

f(θ)dθ =
1

2
, an =

1

π

∫ π

0

f(θ) cosnθ dθ = 0,

bn =
1

π

∫ π

0

f(θ) sinnθ dθ = − 1

nπ
cosnθ|π0 =

1− cosnπ

nπ
, n = 1, 2, · · · .


