Examples shown that IIM produces second order accurate solution and the first order derivatives in 1D

Nnenna Anoruo, Kevin Luna, William Reese, Justin Rivera
Faculty Mentor: Dr.Zhilin Li

NC State University REU 2015 (June 1-July 31)

1 Introduction

Here are some sample computations demonstrating the second order accurate derivative at the interface for the 1-D interface problem presented in "The Immersed Interface Method" by Dr.Li by using a two sided method directly related to the IIM. The 1-D Interface problem where $x \in$ $(0, \alpha) \cup(\alpha, 1)$ is often expressed as:

$$
\left(\beta_{x} u\right)_{x}-\sigma u=f
$$

In the examples presented here, all the functions have finite jumps at the interface α. The same β and σ are used throughout, and the proper Dirichlet boundary condition according the the actual solution are always chosen. Note

$$
\beta(x)= \begin{cases}1+\frac{\cos (x)}{2} & \text { if } \quad x \leq \alpha \\ 1+x^{2} \quad \text { if } & x>\alpha\end{cases}
$$

and

$$
\sigma(x)=\left\{\begin{array}{lll}
(1+x)^{2} & \text { if } \quad x \leq \alpha \\
\ln (2+x) & \text { if } \quad x>\alpha
\end{array}\right.
$$

2 Example 1

Consider the problem where
$f(x)=\left\{\begin{array}{l}(120)^{2}\left(-\left(\frac{\cos (x)}{2}+1\right)\right) \sin (120 x)-\frac{120}{2} \sin (x) \cos (120 x)-(1+x)^{2} \cos (120 x) \quad \text { if } x<\alpha \\ (30)\left(-30\left(x^{2}+1\right) \cos (30 x)-2 x \sin (30 x)\right)-\ln (2+x) \cos (30 x) \quad \text { if } \quad x<\alpha .\end{array}\right.$
The exact solution can be shown to be

$$
u(x)=\left\{\begin{array}{lcc}
\sin (120 x) & \text { if } \quad x \leq \alpha \\
\cos (30 x) & \text { if } \quad x>\alpha
\end{array}\right.
$$

Figure 1: (a): An example of a computed solution with $n=1280$ grid divisions. Note the actual solution has its discontinuity connected by the plotter. (b): The error difference of the solution and actual solution at the grid points.

Figure 2: (a): Grid refinement analysis of the approximate solution with 15 refinements starting at $n=20$. Note that the axis has been adjusted so some points may not be visible. The slope of the regression line fit is 2.1 (b):Grid refinement analysis of the right derivative at the interface with the one-sided and two-sided(IIM) methods. Note that a linear regression fit shows that the slope of the line of best fit is 1.08 and 1.90 for the one-sided and two-sided methods respectively. This shows the IIM two sided method gave an order 2 accurate approximation while standard one-sided methods gave a first order accurate approximation.

3 Example 2

Consider the problem where
$f(x)=\left\{\begin{array}{l}(120)^{2}\left(-\left(\frac{\cos (x)}{2}+1\right)\right) \sin (120 x)-\frac{120}{2} \sin (x) \cos (120 x)-(1+x)^{2} \sin (120 x) \text { if } x \leq \alpha \\ \frac{x^{2}+200 x-1}{(x+100)^{2}}-\ln (2+x) \ln (100+x) \quad \text { if } \quad x>\alpha .\end{array}\right.$

The exact solution can be shown to be

$$
u(x)=\left\{\begin{array}{l}
\sin (120 x) \quad \text { if } \quad x \leq \alpha \\
\ln (100+x) \quad \text { if } \quad x>\alpha
\end{array}\right.
$$

Figure 3: (a): An example of a computed solution with $n=1280$ grid divisions. Note the actual solution has its discontinuity connected by the plotter. Note that the axis has been adjusted so some points may not be visible. (b): The error difference of the solution and actual solution at the grid points.

Figure 4: (a): Grid refinement analysis of the approximate solution with 14 refinements starting at $n=20$. Note that the axis has been adjusted so some points may not be visible. The slope of the regression line fit is 2.1 (b):Grid refinement analysis of the left derivative at the interface with the one-sided and two-sided(IIM) methods. Note that a linear regression fit shows that the slope of the line of best fit is about 1.06 and 1.96 for the one-sided and two-sided methods respectively. This shows the IIM two sided method gave an order 2 accurate approximation while standard one-sided methods gave a first order accurate approximation.

4 Example 3

Consider the problem where

$$
f(x)=\left\{\begin{array}{l}
(15)^{2}\left(1+\frac{\cos (x)}{2}\right) \sinh (15 x)-(15) \frac{\sin (x)}{2} \cosh (15 x)-(1+x)^{2} \sinh (15 x) \quad \text { if } x \leq \alpha \\
\left(-\left(x^{2}+1\right) \cosh (x)-2 x \sinh (x)\right)-\ln (2+x) \cosh (x) \quad \text { if } x>\alpha
\end{array}\right.
$$

The exact solution can be shown to be

$$
u(x)=\left\{\begin{array}{l}
\sinh (15 x) \quad \text { if } \quad x \leq \alpha \\
\cosh (x) \quad \text { if } \quad x>\alpha
\end{array}\right.
$$

Figure 5: (a): An example of a computed solution with $n=640$ grid divisions. Note the actual solution has its discontinuity connected by the plotter. (b): The error difference of the solution and actual solution at the grid points.

Figure 6: (a): Grid refinement analysis of the approximate solution with 14 refinements starting at $n=20$.Note that the axis has been adjusted so some points may not be visible. The slope of the regression line fit is 1.96 (b):Grid refinement analysis of the left derivative at the interface with the one-sided and two-sided(IIM) methods. Note that a linear regression fit shows that the slope of the line of best fit is about 1.02 and 2.02 for the one-sided and two-sided methods respectively. This shows the IIM two sided method gave an order 2 accurate approximation while standard one-sided methods gave a first order accurate approximation.

5 Acknowledgments

This project was funded by the following agencies and grants:
NSF DMS-1461148
NSA H98230-15-1-0024

