Examples of Second Order Accurate Derivatives Using the IIM in Spherical Coordinates with Axis Symmetry

Nnenna Anoruo, Kevin Luna, William Reese, Justin Rivera
Research Mentor: Dr.Zhilin Li

NC State University REU 2015

The axis-symmetric interface problem in spherical coordinates where $r \in(0, \alpha) \cup(\alpha, 1)$ can be expressed as: $r \in(0, \alpha) \cup(\alpha, 1)$ is often expressed as:

$$
\frac{1}{r^{2}}\left(r^{2} \beta u_{r}\right) r=f
$$

In the examples presented here, β, u_{r}, u have finite jumps at the interface α. The same β is used throughout, and the proper Dirichlet boundary condition according the the actual solution are always chosen. Note that

$$
\beta(x)=\left\{\begin{array}{l}
1 \quad \text { if } \quad r \leq \alpha \\
100 \quad \text { if } \quad r>\alpha
\end{array}\right.
$$

1 Example 1

Consider the problem where

$$
f(r)=\left\{\begin{array}{l}
\frac{-(2 \sin (r)}{r}-\cos (r) \quad \text { if } \quad r \leq \alpha \\
\left(\frac{2}{r}-r\right) \cos (r)-4 \sin (r) \quad \text { if } \quad r>\alpha
\end{array}\right.
$$

The exact solution can be shown to be

$$
u(r)=\left\{\begin{array}{l}
\cos (r) \quad \text { if } \quad r \leq \alpha \\
r \cos (r) \quad \text { if } \quad r>\alpha
\end{array}\right.
$$

Figure 1: (a): The surface of the approximation.

Figure 2: (a): An example of a computed solution with $n=160$ grid divisions. Note the actual solution has its discontinuity connected by the plotter. Note that the axis has been adjusted so some points may not be visible. (b): The error difference of the solution and actual solution at the grid points.

Figure 3: (a): Grid refinement analysis of the approximate solution with 8 refinements starting at $n=20$. Note that the axis has been adjusted so some points may not be visible. The slope of the regression line fit is 1.9 (b):Grid refinement analysis of the left derivative at the interface with the one-sided and two-sided(IIM) methods. Note that a linear regression fit shows that the slope of the line of best fit is about 0.96 and 1.92 for the one-sided and two-sided methods respectively. This shows the IIM two sided method gave an order 2 accurate approximation while standard one-sided methods gave a first order accurate approximation.

2 Example 2

Consider the problem where

$$
f(r)=\left\{\begin{array}{l}
-3 r\left(4 \sin \left(r^{3}\right)+3 r^{3} \cos \left(r^{3}\right) \quad \text { if } \quad r \leq \alpha\right. \\
6 \cos \left(r^{2}\right)-4 r^{2} \sin \left(r^{2}\right) \quad \text { if } \quad r>\alpha
\end{array}\right.
$$

The exact solution can be shown to be

$$
u(r)=\left\{\begin{array}{lll}
\cos \left(r^{3}\right) & \text { if } & r \leq \alpha \\
\sin \left(r^{2}\right) & \text { if } & r>\alpha
\end{array}\right.
$$

Figure 4: (a): The surface of the approximation .

Figure 5: (a): An example of a computed solution with $n=160$ grid divisions. Note the actual solution has its discontinuity connected by the plotter. Note that the axis has been adjusted so some points may not be visible. (b): The error difference of the solution and actual solution at the grid points.

Figure 6: (a): Grid refinement analysis of the approximate solution with 8 refinements starting at $n=20$. Note that the axis has been adjusted so some points may not be visible. The slope of the regression line fit is 1.96 (b):Grid refinement analysis of the left derivative at the interface with the one-sided and two-sided(IIM) methods. Note that a linear regression fit shows that the slope of the line of best fit is about 0.99 and 1.89 for the one-sided and two-sided methods respectively. This shows the IIM two sided method gave an order 2 accurate approximation while standard one-sided methods gave a first order accurate approximation.

3 Example 3

Consider the problem where

$$
f(r)=\left\{\begin{array}{lll}
\frac{-2(\sin (2 r)+r \cos (2 r))}{r} & \text { if } \quad r \leq \alpha \\
\frac{2(\sin (2 r)+r \cos (2 r))}{r} & \text { if } \quad r>\alpha
\end{array}\right.
$$

The exact solution can be shown to be

$$
u(r)=\left\{\begin{array}{lll}
\cos ^{2}(r) & \text { if } & r \leq \alpha \\
\sin ^{2}(r) & \text { if } & r>\alpha
\end{array}\right.
$$

Figure 7: (a): The surface of the approximation .

Figure 8: (a): An example of a computed solution with $n=160$ grid divisions. Note the actual solution has its discontinuity connected by the plotter. Note that the axis has been adjusted so some points may not be visible. (b): The error difference of the solution and actual solution at the grid points.

Figure 9: (a): Grid refinement analysis of the approximate solution with 8 refinements starting at $n=20$. Note that the axis has been adjusted so some points may not be visible. The slope of the regression line fit is 1.8 (b):Grid refinement analysis of the left derivative at the interface with the one-sided and two-sided(IIM) methods. Note that a linear regression fit shows that the slope of the line of best fit is about 0.94 and 1.94 for the one-sided and two-sided methods respectively. This shows the IIM two sided method gave an order 2 accurate approximation while standard one-sided methods gave a first order accurate approximation.

4 Acknowledgments

This project was funded by the following agencies and grants:
NSF DMS-1461148
NSA H98230-15-1-0024

