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1 Fourth order compact scheme for 1D Sturm-Liouville BVP
Consider
(p'u) + Ku=f, T < T < Ty, u(zy) = ug,  u(zy) = up. (1)
We assume that p(x) > py > 0.

1.1 Constant p

If this case, we simply take p = 1 and assume that K = 0. We have the following lemma for
a three-point finite difference formula. Given a grid point x;. Assume that x; — ;1 = h; and
Tiy1 — 3 = ho. We design the following compact finite difference scheme,
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Then, the finite difference scheme is exact if u(x) is any polynomial of degree 4 and the local
truncation error T;

> Be=1, |Ti| < Cmax {n},n3} (4)
k

and |T}| < Ch* if hy = ho = h. We can see the ‘symmetry’ between the left and right grid points as
expected. Note that when hqy = ho we have the standard fourth-order compact formula. The finite
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difference coefficients satisfy the sign property needed for an M-matrix conditions. When K # 0,
we can treat Ku as a source term like f, that is, we add the

B1Ui—1 + BoU; + B3U;41, (5)

term to the finite difference equation at the right hand side.

Thus, we will have fourth order accurate and stable finite difference method if a uniform mesh
is used. The non-uniform mesh can be used for a few isolated grid points without affecting global
fourth order accuracy.

1.2 Variable p(z)

For simplicity of the discussion we assume that K = 0 and a uniform mesh. We also need p/(z) and
p”(x) or third order approximations. Define
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p(x) =p +o7P (6)

which depends on the mesh size h. The fourth order FD equation then is

Bivy Uit = (Puay + 91y ) Uit iy Ui (7)
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where
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Note that the first term is the same as that when p = 1. The proof is based on an important lemma.

Lemma 1 Assume that u(z) € C*, then
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Derivation of the FD equation: From (pu’)’ = f and the lemma, we have
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We further apply the lemma to obtain
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Thus, the key is to have a second order approximation to the (pu”)(z;) term. From the ODE
(pu) = f, we know that
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We differentiate (pu’)’ = f once more and expand to get
pul// + 2p/u// +p//u/ — f/‘ (11)

From the above, we solve for v"" and plug the expression of u” to get
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Thus, we have
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Finally we apply the central finite difference formula for the above three terms and note that the
last term is a self-adjoint second order finite difference operator that can be combined with the
(pu')’ term, then we get the designed finite difference equation and the local truncation error.

Example 1 Let the true solution be u(z) = sin(kz), 0 < x < 7, p(x) = 1 +22. The source term is
f(x) = 2z cos(kx) — k?(1 + 22)sin(kx). Table 1 is a grid refinement analysis when k = 3.

Table 1: A grid refinement analysis of the third order compact finite element method for Example 1
with k = 5.

N 1 E]l 0o Order
16 | 7.2920e-04
32 | 4.4976e-05 | 4.0191
64 | 2.8017e-06 | 4.0048
128 | 1.7496e-07 | 4.0012
256 | 1.0938e-08 | 3.9996
512 | 6.8355e-10 | 4.0002
1024 | 4.1655e-11 | 4.0365
2056 | 2.7427e-12 | 3.9248

2 A new third order method based on a posterior error analysis

Now we consider u”(x) = —f(x)/f5. It is well-known that the finite element solution is the exact at
nodal points for the special case. Thus the interpolation function is the same as the finite element
solution,
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ulb(z) = Zu(xj)gbj (z) = Zc;qu (z) = up(z), (14)
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From the classical interpolation theory, see for example, [, we know that on an element e; =
[k, Tx+1], the following is true

u(z) = ul(z)+ %(m — ) (2 — 21 ) v (2) + O(h?)
1 f(z) 3 (15)
= up(z) —§($—$k)($—$k+1) T—'_O(h ).

Thus we obtain a third method using a posterior error estimate with a simple correction term that
can be easily calculated.

Theorem 1 Let u(z) € H*(zy,z,), f(z) € L*(z1,2,), and up(x) be the finite element solution
obtained using the Py finite element space, then

up () = up(x) — i(JU — xk) (3: — :Ek+1) f(x), T < T < Tpyl, (16)
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is a third order approximation to the true solution u(x) and we have the following error estimates
lu—up e <CR®, Jlu—up™| g < OB flu—up™|le < OR2. (17)

Note also that up®"(xy) = u(zy) for all k’s. That is, the solution has one more order accuracy.



