Fourth order compact scheme for 1D BVP

Zhilin Li *

Abstract

AMS Subject Classification 2000 65N06, 65N12. Keywords: Poisson/Helmholtz equations, high order compact method.

\section*{1 Fourth order compact scheme for 1D Sturm-Liouville BVP}

Consider

$$
\begin{equation*}
\left(p^{\prime} u^{\prime}\right)^{\prime}+K u=f, \quad x_{l}<x<x_{r}, \quad u\left(x_{l}\right)=u_{a}, \quad u\left(x_{l}\right)=u_{b} . \tag{1}
\end{equation*}
$$

We assume that $p(x) \geq p_{0}>0$.

1.1 Constant p

If this case, we simply take $p=1$ and assume that $K=0$. We have the following lemma for a three-point finite difference formula. Given a grid point x_{i}. Assume that $x_{i}-x_{i-1}=h_{1}$ and $x_{i+1}-x_{i}=h_{2}$. We design the following compact finite difference scheme,

$$
\begin{equation*}
\sum_{k=-1}^{1} \alpha_{k} U_{i+k}=\sum_{k=-1}^{1} \beta_{k} f_{i+k} \tag{2}
\end{equation*}
$$

The coefficients are given as

$$
\begin{align*}
& \alpha_{1}=\frac{2}{h_{1}\left(h_{1}+h_{2}\right)}, \quad \alpha_{3}=\frac{2}{h_{2}\left(h_{1}+h_{2}\right)}, \quad \alpha_{2}=-\left(\alpha_{l}+\alpha_{r}\right)=-\frac{2}{h_{1} h_{2}}, \\
& \beta_{1}=\frac{h_{1}^{2}-h_{2}^{2}+h h_{2}}{6 h_{1}\left(h_{1}+h_{2}\right)}, \quad \beta_{3}=\frac{-h_{1}^{2}+h_{2}^{2}+h h_{2}}{6 h_{2}\left(h_{1}+h_{2}\right)}, \quad \beta_{2}=\frac{h_{2}^{2}+h^{2}+3 h_{1} h_{2}}{6 h_{1} h_{2}} . \tag{3}
\end{align*}
$$

Then, the finite difference scheme is exact if $u(x)$ is any polynomial of degree 4 and the local truncation error T_{i}

$$
\begin{equation*}
\sum_{k} \beta_{k}=1, \quad\left|T_{i}\right| \leq C \max \left\{h_{1}^{3}, h_{2}^{3}\right\} \tag{4}
\end{equation*}
$$

and $\left|T_{i}\right| \leq C h^{4}$ if $h_{1}=h_{2}=h$. We can see the 'symmetry' between the left and right grid points as expected. Note that when $h_{1}=h_{2}$ we have the standard fourth-order compact formula. The finite

[^0]difference coefficients satisfy the sign property needed for an M-matrix conditions. When $K \neq 0$, we can treat $K u$ as a source term like f, that is, we add the
\[

$$
\begin{equation*}
\beta_{1} U_{i-1}+\beta_{2} U_{i}+\beta_{3} U_{i+1} \tag{5}
\end{equation*}
$$

\]

term to the finite difference equation at the right hand side.
Thus, we will have fourth order accurate and stable finite difference method if a uniform mesh is used. The non-uniform mesh can be used for a few isolated grid points without affecting global fourth order accuracy.

1.2 Variable $p(x)$

For simplicity of the discussion we assume that $K=0$ and a uniform mesh. We also need $p^{\prime}(x)$ and $p^{\prime \prime}(x)$ or third order approximations. Define

$$
\begin{equation*}
\hat{p}(x)=p-\frac{h^{2}}{12} \frac{\left(p^{\prime}\right)^{2}}{p}+\frac{h^{2}}{24} p^{\prime \prime} \tag{6}
\end{equation*}
$$

which depends on the mesh size h. The fourth order FD equation then is

$$
\begin{equation*}
\frac{\hat{p}_{i+\frac{1}{2}} U_{i+1}-\left(\hat{p}_{i+\frac{1}{2}}+\hat{p}_{i-\frac{1}{2}}\right) U_{i}+\hat{p}_{i-\frac{1}{2}} U_{i-1}}{h^{2}}=F_{i}, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{i}=\frac{f_{i-1}+10 f_{i}+f_{i+1}}{12}-\frac{h^{2}}{12} \frac{\left(\frac{p^{\prime} f}{p}\right)\left(x_{i+\frac{1}{2}}\right)-\left(\frac{p^{\prime} f}{p}\right)\left(x_{i-\frac{1}{2}}\right)}{2 h} . \tag{8}
\end{equation*}
$$

Note that the first term is the same as that when $p=1$. The proof is based on an important lemma.
Lemma 1 Assume that $u(x) \in C^{4}$, then

$$
\begin{equation*}
\frac{u(x+h / 2)-u(x-h / 2)}{h}=u^{\prime}(x)+\frac{h^{2}}{24} u^{\prime \prime \prime}(x)+O\left(h^{4}\right) . \tag{9}
\end{equation*}
$$

Derivation of the FD equation: From $\left(p u^{\prime}\right)^{\prime}=f$ and the lemma, we have

$$
\begin{aligned}
\frac{p_{i+\frac{1}{2}} u^{\prime}\left(x_{i+\frac{1}{2}}\right)-p_{i-\frac{1}{2}} u^{\prime}\left(x_{i-\frac{1}{2}}\right)}{h} & =\left(p u^{\prime}\right)^{\prime}\left(x_{i}\right)+\frac{h^{2}}{24}\left(p u^{\prime}\right)^{\prime \prime \prime}\left(x_{i}\right)+O\left(h^{4}\right) \\
& =f\left(x_{i}\right)+\frac{h^{2}}{24} f^{\prime \prime}\left(x_{i}\right)+O\left(h^{4}\right) .
\end{aligned}
$$

We further apply the lemma to obtain

$$
\left.\begin{array}{rl}
\frac{p_{i+\frac{1}{2}} \frac{u\left(x_{i+1}\right)-u\left(x_{i}\right)}{h}-p_{i-\frac{1}{2}} \frac{u\left(x_{i}\right)-u\left(x_{i-1}\right)}{h}}{h}= & f\left(x_{i}\right)
\end{array}\right)+\frac{h^{2}}{24} f^{\prime \prime}\left(x_{i}\right)+O\left(h^{4}\right) .
$$

Thus, the key is to have a second order approximation to the $\left(p u^{\prime \prime \prime}\right)\left(x_{i}\right)$ term. From the ODE $\left(p u^{\prime}\right)^{\prime}=f$, we know that

$$
\begin{equation*}
u^{\prime \prime}=\frac{f-p^{\prime} u^{\prime}}{p} \tag{10}
\end{equation*}
$$

We differentiate $\left(p u^{\prime}\right)^{\prime}=f$ once more and expand to get

$$
\begin{equation*}
p u^{\prime \prime \prime}+2 p^{\prime} u^{\prime \prime}+p^{\prime \prime} u^{\prime}=f^{\prime} . \tag{11}
\end{equation*}
$$

From the above, we solve for $u^{\prime \prime \prime}$ and plug the expression of $u^{\prime \prime}$ to get

$$
\begin{equation*}
u^{\prime \prime \prime}=\frac{f^{\prime}}{p}-\frac{2 p^{\prime}\left(f-p^{\prime} u^{\prime}\right)}{p^{2}}-\frac{p^{\prime \prime} u^{\prime}}{p} . \tag{12}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\frac{h^{2}}{24}\left(p u^{\prime \prime \prime}\right)^{\prime}=\frac{h^{2}}{24} f^{\prime \prime}-\frac{h^{2}}{24}\left(\frac{2 p^{\prime} f}{p}\right)^{\prime}+\frac{h^{2}}{24}\left(\left(\frac{2\left(p^{\prime}\right)^{2}}{p}-p^{\prime \prime}\right) u^{\prime}\right)^{\prime} . \tag{13}
\end{equation*}
$$

Finally we apply the central finite difference formula for the above three terms and note that the last term is a self-adjoint second order finite difference operator that can be combined with the $\left(p u^{\prime}\right)^{\prime}$ term, then we get the designed finite difference equation and the local truncation error.

Example 1 Let the true solution be $u(x)=\sin (k x), 0<x<\pi, p(x)=1+x^{2}$. The source term is $f(x)=2 x \cos (k x)-k^{2}\left(1+x^{2}\right) \sin (k x)$. Table 1 is a grid refinement analysis when $k=3$.

Table 1: A grid refinement analysis of the third order compact finite element method for Example 1 with $k=5 \pi$.

N	$\\|E\\|_{\infty}$	Order
16	$7.2920 \mathrm{e}-04$	
32	$4.4976 \mathrm{e}-05$	4.0191
64	$2.8017 \mathrm{e}-06$	4.0048
128	$1.7496 \mathrm{e}-07$	4.0012
256	$1.0938 \mathrm{e}-08$	3.9996
512	$6.8355 \mathrm{e}-10$	4.0002
1024	$4.1655 \mathrm{e}-11$	4.0365
2056	$2.7427 \mathrm{e}-12$	3.9248

2 A new third order method based on a posterior error analysis

Now we consider $u^{\prime \prime}(x)=-f(x) / \beta$. It is well-known that the finite element solution is the exact at nodal points for the special case. Thus the interpolation function is the same as the finite element solution,

$$
\begin{equation*}
u_{h}^{I}(x)=\sum_{j=1}^{M} u\left(x_{j}\right) \phi_{j}(x)=\sum_{j=1}^{M} c_{j}^{*} \phi_{j}(x)=u_{h}(x), \tag{14}
\end{equation*}
$$

From the classical interpolation theory, see for example, [], we know that on an element $e_{k}=$ [x_{k}, x_{k+1}], the following is true

$$
\begin{align*}
u(x) & =u_{h}^{I}(x)+\frac{1}{2}\left(x-x_{k}\right)\left(x-x_{k+1}\right) u^{\prime \prime}(x)+O\left(h^{3}\right) \\
& =u_{h}(x)-\frac{1}{2}\left(x-x_{k}\right)\left(x-x_{k+1}\right) \frac{f(x)}{\beta}+O\left(h^{3}\right) . \tag{15}
\end{align*}
$$

Thus we obtain a third method using a posterior error estimate with a simple correction term that can be easily calculated.

Theorem 1 Let $u(x) \in H^{2}\left(x_{l}, x_{r}\right), f(x) \in L^{2}\left(x_{l}, x_{r}\right)$, and $u_{h}(x)$ be the finite element solution obtained using the P_{1} finite element space, then

$$
\begin{equation*}
u_{h}^{\text {new }}(x)=u_{h}(x)-\frac{1}{2 \beta}\left(x-x_{k}\right)\left(x-x_{k+1}\right) f(x), \quad x_{k}<x<x_{k+1}, \tag{16}
\end{equation*}
$$

is a third order approximation to the true solution $u(x)$ and we have the following error estimates

$$
\begin{equation*}
\left\|u-u_{h}^{n e w}\right\|_{L^{2}} \leq C h^{3}, \quad\left\|u-u_{h}^{n e w}\right\|_{H^{1}} \leq C h^{2}, \quad\left\|u-u_{h}^{n e w}\right\|_{e} \leq C h^{2} . \tag{17}
\end{equation*}
$$

Note also that $u_{h}^{\text {new }}\left(x_{k}\right)=u\left(x_{k}\right)$ for all k 's. That is, the solution has one more order accuracy.

[^0]: *Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA

