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1 Fourth order compact scheme for 1D Sturm-Liouville BVP

Consider

(p′u′)′ +Ku = f, xl < x < xr, u(xl) = ua, u(xl) = ub. (1)

We assume that p(x) ≥ p0 > 0.

1.1 Constant p

If this case, we simply take p = 1 and assume that K = 0. We have the following lemma for
a three-point finite difference formula. Given a grid point xi. Assume that xi − xi−1 = h1 and
xi+1 − xi = h2. We design the following compact finite difference scheme,

1∑
k=−1

αkUi+k =
1∑

k=−1
βkfi+k. (2)

The coefficients are given as

α1 =
2

h1(h1 + h2)
, α3 =

2

h2(h1 + h2)
, α2 = − (αl + αr) = − 2

h1h2
,

β1 =
h21 − h22 + hh2
6h1(h1 + h2)

, β3 =
−h21 + h22 + hh2

6h2(h1 + h2)
, β2 =

h22 + h2 + 3h1h2
6h1h2

.

(3)

Then, the finite difference scheme is exact if u(x) is any polynomial of degree 4 and the local
truncation error Ti ∑

k

βk = 1, |Ti| ≤ C max
{
h31, h

3
2

}
(4)

and |Ti| ≤ Ch4 if h1 = h2 = h. We can see the ‘symmetry’ between the left and right grid points as
expected. Note that when h1 = h2 we have the standard fourth-order compact formula. The finite
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difference coefficients satisfy the sign property needed for an M-matrix conditions. When K 6= 0,
we can treat Ku as a source term like f , that is, we add the

β1Ui−1 + β2Ui + β3Ui+1, (5)

term to the finite difference equation at the right hand side.
Thus, we will have fourth order accurate and stable finite difference method if a uniform mesh

is used. The non-uniform mesh can be used for a few isolated grid points without affecting global
fourth order accuracy.

1.2 Variable p(x)

For simplicity of the discussion we assume that K = 0 and a uniform mesh. We also need p′(x) and
p′′(x) or third order approximations. Define

p̂(x) = p− h2

12

(p′)2

p
+
h2

24
p′′ (6)

which depends on the mesh size h. The fourth order FD equation then is

p̂i+ 1
2
Ui+1 −

(
p̂i+ 1

2
+ p̂i− 1

2

)
Ui + p̂i− 1

2
Ui−1

h2
= Fi,

(7)

where

Fi =
fi−1 + 10fi + fi+1

12
− h2

12

(
p′f
p

)
(xi+ 1

2
)−

(
p′f
p

)
(xi− 1

2
)

2h
. (8)

Note that the first term is the same as that when p = 1. The proof is based on an important lemma.

Lemma 1 Assume that u(x) ∈ C4, then

u(x+ h/2)− u(x− h/2)

h
= u′(x) +

h2

24
u′′′(x) +O(h4). (9)

Derivation of the FD equation: From (pu′)′ = f and the lemma, we have

pi+ 1
2
u′(xi+ 1

2
)− pi− 1

2
u′(xi− 1

2
)

h
= (pu′)′(xi) +

h2

24
(pu′)′′′(xi) +O(h4)

= f(xi) +
h2

24
f ′′(xi) +O(h4).

We further apply the lemma to obtain

pi+ 1
2

u(xi+1)−u(xi)
h − pi− 1

2

u(xi)−u(xi−1)
h

h
= f(xi) +

h2

24
f ′′(xi) +O(h4)

+
h

24

(
pi+ 1

2
u′′′(xi+ 1

2
)− pi− 1

2
u′′′(xi− 1

2
)
)

+O(h4)

= f(xi) +
h2

24
f ′′(xi) +

h2

24
(pu′′′)′(xi) +O(h4).
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Thus, the key is to have a second order approximation to the (pu′′′)(xi) term. From the ODE
(pu′)′ = f , we know that

u′′ =
f − p′u′

p
. (10)

We differentiate (pu′)′ = f once more and expand to get

pu′′′ + 2p′u′′ + p′′u′ = f ′. (11)

From the above, we solve for u′′′ and plug the expression of u′′ to get

u′′′ =
f ′

p
− 2p′(f − p′u′)

p2
− p′′u′

p
. (12)

Thus, we have

h2

24
(pu′′′)′ =

h2

24
f ′′ − h2

24

(
2p′f

p

)′
+
h2

24

((
2(p′)2

p
− p′′

)
u′
)′
. (13)

Finally we apply the central finite difference formula for the above three terms and note that the
last term is a self-adjoint second order finite difference operator that can be combined with the
(pu′)′ term, then we get the designed finite difference equation and the local truncation error.

Example 1 Let the true solution be u(x) = sin(kx), 0 < x < π, p(x) = 1 + x2. The source term is
f(x) = 2x cos(kx)− k2(1 + x2) sin(kx). Table 1 is a grid refinement analysis when k = 3.

Table 1: A grid refinement analysis of the third order compact finite element method for Example 1
with k = 5π.

N ‖E‖∞ Order

16 7.2920e-04
32 4.4976e-05 4.0191
64 2.8017e-06 4.0048
128 1.7496e-07 4.0012
256 1.0938e-08 3.9996
512 6.8355e-10 4.0002
1024 4.1655e-11 4.0365
2056 2.7427e-12 3.9248

2 A new third order method based on a posterior error analysis

Now we consider u′′(x) = −f(x)/β. It is well-known that the finite element solution is the exact at
nodal points for the special case. Thus the interpolation function is the same as the finite element
solution,

uIh(x) =
M∑
j=1

u(xj)φj(x) =

M∑
j=1

c∗jφj(x) = uh(x), (14)
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From the classical interpolation theory, see for example, [], we know that on an element ek =
[xk, xk+1], the following is true

u(x) = uIh(x) +
1

2

(
x− xk

)(
x− xk+1

)
u′′(x) +O(h3)

= uh(x)− 1

2

(
x− xk

)(
x− xk+1

) f(x)

β
+O(h3).

(15)

Thus we obtain a third method using a posterior error estimate with a simple correction term that
can be easily calculated.

Theorem 1 Let u(x) ∈ H2(xl, xr), f(x) ∈ L2(xl, xr), and uh(x) be the finite element solution
obtained using the P1 finite element space, then

unewh (x) = uh(x)− 1

2β

(
x− xk

)(
x− xk+1

)
f(x), xk < x < xk+1, (16)

is a third order approximation to the true solution u(x) and we have the following error estimates

‖u− unewh ‖L2 ≤ Ch3, ‖u− unewh ‖H1 ≤ Ch2, ‖u− unewh ‖e ≤ Ch2. (17)

Note also that unewh (xk) = u(xk) for all k’s. That is, the solution has one more order accuracy.
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